DTIC

ELECTE ™%

AN EMPIRICAL DEVELOPMENT OF
PARALLELIZATION GUIDELINES FOR
TIME-DRIVEN SIMULATION

THESIS

Mark Leslie Huson
Captain, USAF

AFIT/GCS/ENG/89D-10

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public relecse;

o o e e 89 12 18 093

e e

Eam——— S —"

AFIT/GCS/ENG/89D-10

AN EMPIRICAL DEVELOPMENT OF
PARALLELIZATION GUIDELINES FOR
TIME-DRIVEN SIMULATION

THESIS

Mark Leslie Huson
Captain, USAF

AFIT/GCS/ENG/89D-10 | DT! C
ELECTE g%
DEC191989 §

Approved for public release; distribution unlimited

AFIL GOS/ENG/89D-10

AN EMPIRICAL DEVELOPMENT OF PARAULLELIZATION
GUIDELINES FOR TIME-DRIVEN SIMULATION

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Science)

Mark Leslie Huson, B.S., M.S.
Captain, USAF

Deccember, 1989

Approved for public release; distribution unlimited

1

Acknowledgments

There are many individuals who deserve thanks for their support in this re-
search effort. First, I would like to thank Dr. Thomas C. Hartrum, my thesis advisor,
for his guidance, comments, suggestions, and 1deas. Without his help and encour-
agement this document would not exist. 1 would also like to thank the members of
my thesis committee, Maj William Hobart, Capt Bruce George, and CPT Robert
Hammell. They certainly earned my gratitude for providing badly needed input and
my respect for their patience and thoroughness in reviewing my appropriately named

rough draft.

[would also like to thank all those people who made life and learning at AFIT
bearable. The entire GCS section comes to mind tor the infrequent but necessary
respits from studying. In particular my fellow Cub fans, Captains Bill Harding and
Mike Proicou and their wives, and Captains Steve March and Gary Whitted and
their wives, who though not Cub fans, put on a good show dnring our trips to waich

some games.

I would also like to recognize the help of my professors at the University of
Tulsa. They will never know how well they prepared me for AFIT and I'm not sure
tney would believe me if I told them. Ellen, Suny, Cathy, Cindy and Liz at Moore’s
Nautilus would be equally surprised if I were to tell them how much they helped me

to maintain my sanity in what otherwise would have been a1 .. ssible program.

Finally, I would like to thank my parents for their support and encouragement.
No amount of effort on my part can repay the love and patient guidance they have I
provided over the years. It may have seemed that I paid no attention or didn’t care, -d

but they were never discouraged, and for that I am thankful. B

10_/_ »
Mark Leslie Huson 1ty Codes
L and/or
Dist speoial

|

o

Table of Contents

Page

Acknowledoments . . . L0000 o i
Table of Contents 1
Listof Figures X
Listof Tables xii
Abstract L X1v
I Introductiono 1-1
1.1 Why Distributed Simulation? I-1

1.2 The Simulation Process 1-2

1.2.1 Simulation Categories 1-2

1.2.2 Implementation Languages 1-3

1.3 Distributed Simulation oL 1-3

1.3.1 Current Research i-3

1.3.2 Hardwarc Perspectives 1-5

1.3.3 Research Approaches 1-5

1.3.4 Implementation Concerns 1-6

1.4 Problem Statement 1-6

1.5 Scope e 1-7

1.6 Approach L 1-8

1.7 Overviewof the Thesis 1-9

Page

I1. Issues in Parallel Simulation 2-1
2.1 What are theissues? 2-1

2.1.1 Feasibility 2-1

2.1.2 Interprocess Communication 2-2

2.1.3 Synchronization 2-4

214 Deadlock. o0 2-5

2.1.5 Load Balance 2-6

2.1.6 Determinism. 2-7

2.2 Conservative, Optimistic, or a Middle Ground 2-8

2.3 Time Driven vs. Event Driven 2-10

2.4 Parallelizing Existing Simulations 2-10

2.4.1 Deciding to Parallelize 2-10

242 LevelofEffort 2-11

I1I. Parallel Hardware Architectures 3-1
3.1 The InteliPSC/1 oo oo 3-1

3.1.1 AFITiPSC/1 Configurations 3-4

3.2 ThelnteliPSC/2 3-4

3.2.1 AFIT iPSC/2 Configuration 3-5

3.3 The Encore Multimax 3-5

3.3.1 AFIT Encore Configuration 3-7

IV. The Ballistic Missile Defense (BMD) Simulation 4-1
4.1 UseasaTest Vehicle 4-1

4.2 Introduction and Description 4-1

4.3 Analysis of the Sequential Simulation 4-5

v

Implementations of the BMD Simulation 5-1
51 Description of iPSC/1 Implementation #1 5-2
5.1.1 Decomposition Process 5-3

5.1.2 Parzllehization Characteristics 5-4

5.2 Description of iPSC/1 Implementation #2 5-4
5.2.1 Decomposition Process 5-5

5.2.2 Parallelization Characteristics 5-6

5.3 Description of iPSC/1 Implementation #3 5-6
5.3.1 Decomposition Process 5-7

5.3.2 Parallelization Characteristics 5-8

5.4 Description of iPSC/1 Implementation #4 5-8
5.4.1 Decomposition Process 5-9

5.4.2 Parallelization Characteristics 5-9

5.5 Description of iPSC/1 Implementation #5 5-10
5.5.1 Decomposition Process 5-10

5.5.2 Parallelization Characteristics 5-10

5.6 Description of iPSC/1 Implementation #6 5-11
5.6.1 Decomposition Process 5-12

5.6.2 Parallelization Characteristics 5-12

5.7 Description of iPSC/1 Implementation #7 5-13
5.7.1 Decomposition Process 5-13

5.7.2 Parallelization Characteristics 5-14

5.8 Description of iPSC/2 Version of Implementation #7 . 5-14
5.9 Description of iPSC/1 Implementation #8 5-15
5.9.1 Decomposition Process 5-15

5.9.2 Parallelization Characteristics 5-15

5.1" Encore Implementation for the BMD Simulation 5-16

v

5.10.1 Implementation Description . . .

5.11 A Final Note on Parallel Implementations

VI. Empirical Results and Analysis
6.1 1PSC Implementation Results
6.1.1 iPSC/1 Implementation #1 . . .

6.1.2 iPSC/1 Implementation #2 . . .

6.1.3 iPSC/1 Implementation #3 . . .

6.1.4 iPSC/1 Implementation #4 . . .

6.1.5 iPSC/1 Implementation #5 . . .

6.1.6 1PSC/1 Implementation #6 . . .

6.1.7 1PSC/1 Implementation #7 . . .

6.1.8 1PSC/2 Implementation #7 . . .

6.1.9 iPSC/1 Implementation #8 . . .

6.2 Encore Implementation Results
6.3 A Comparison of Architectures
6.3.1 Performance

6.3.2 Programming Environment

6.4 Guideline Development

VII. Conclusions and Recommendations

7.1 Cornclusions

Appendix A. Guidelines for Simulation Parallelization

A.l] General Concerns

A.2 The Guidelines

vi

Appendix B. BMD Simulation Data Structures
Appendix C. Implementation Results
Appendix D. Precgram Pseudocodeo

D.1 iPSC/1 Implementation #1
D.1.1 Host Program
D.1.2 Node 0 - ASSIGN
D.1.3 Node]l -LNKORD
D.1.4 Node 2 - SBMIT and SBMPOS
D.1.5 Node3-RRBVIS
D.1.6 Node 4 - BOSTIT and TRAJ
D.1.7 Node 5 -LNKCAL
D.1.8 Node6 -RRPVIS
D19 NodeT-MIRVIS.
D.2 iPSC/1 Implementation #2
D.2.1 Host Program
D.2.2 Node 0 - LNKORD and ASSIGN

D.2.3 Node 1 - RRBVIS, RRPVIS, MIRVIS, &

LNKCAL

D.24 Node 2 - BOSTIT and TRAJ

D.2.5 Node 3 - SBMIT and SBMPOS

D.3 iPSC/1 Implementation #3
D.3.1 Host Program

D.3.2 Node0- ASSIGN

D.3.3 Node 1 - SBMIT and SBMPOS

D.34 Node2-RRPVIS

D.3.5 Node 3 - BOSTIT and TRAJ

Vil

D-9
D-10
D-11
D-11
D-13

D-14
D-16
D-16
D-17
D-17
D-19
D-20
D-21
D-22

Page

D.3.6 Node4 - RRBVIS D-23
D.3.7 Node 5+ - MIRVIS, LNKCAL. & LNKORD . D-24
D.4 iPSC/1 Implenientation #4 D-26
D.4.1 Host Program D-26
D.4.2 Node 0 - ASSIGN)-2x
D.4.3 Node 1 - SBMIT and SBMPOS D-29
D.4.4 Node 2 - BOSTIT and TRAJ D-30
D45 Node3-RRBVIS D-31
D.4.6 Node 4+ - RRPVIS, MIRVIS, LNKCAL, &
LNKORD D-32
D.5 iPSC/1 Implementation #5 1)-34
D.5.1 Host Program D-31
D.52 Node 0 - ASSIGN D-36
D.5.2 Node 1 - SBMIT and SBMPOS D-37
D.5.4 Node 2 - BOSTIT and TRAJ D-3x
D.5.5 Node 3 - Supervisor node D-38
D.5.6 Node 4+ - RRPVIS, RRBVIS. MIRVIS,
LNKCAL, & LNKORD D-40
D.6 iPSC/! Implementation #6 D-41
D.6.1 Host Program D-41
D.6.2 Node 0 - ASSIGN D-43
D.6.3 Node 1 - Supervisornode D-45

D.6.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ.
RRPVIS, RRBVIS, MIRVIS, LNKCAL, &

LNKORD D-46
D.7 iPSC/1 Implementation #7 D-48
D.7.1 Host Program D-48
D.7.2 Node 0 - SBMIT, SBMPOS, BOSTIT, TRAJ,
& ASSIGN D-50
viil

D.7.3 Node 1 - BOSTIT. TRAJ, Supervisor node
7.4 Node 24 - SBMIT, SBMPOS. BOSTIT, TRAJ.
RRPVIS, RRBVIS, MIRVIS, LNKCAL, &
LNKORD
D.& 1PSC/1 Implementation #7
D.8.1 Host Program
D.&82 Node O - ASSIGN
D.&83 Node 14+ - RRPVIS, RRBVIS, MIRVIS.
LNKCAL & LNKORD . . . 0. 0000 .
D.9 Encore Implementation L.

1X

Page
D-52

List of Figures

Figure Page
2.1. Dependency Graph for A Car Wash Simulation 2.2
2.2. Simplified Dependency Graph of the BMD Simulation 2.3
2.3. Dependency Graph of an Assembly Line 2-4
3.1. Interconnections in a 16 node hypercube 3-2
3.2. Message Routing it ithe iPSC/100 3-1
3.3. Encore Multimax Functional Diagram 3-6
4.7, Balhistic Missile Defense Simulation Engagement Parameters . . . 4-3
4.2. Functional Structure of BMDSIN00 00 4-4
4.3. Functional Structure of BMDSIM with FORTRAN names 4-6
4.4. Data Flow Diagram of Sequential BMDSIM 4-7
4.5. Top Level Call Tree for Sequential BMDSIM 4-8
4.6. Simplified Data Flow Diagram of BMDSIM without constants . 4-10
5.1. iPSC/1 Node Assignments and Communication for Implementa-

tion #1 . .. L H-3

5.2. iPSC/1 Node Assignments and Communication for Implementa-

tion #2 . L 5-5
5.3. iPSC/1 Node Assignments and Communication for Implementa-

tion #3 . . e 57
5.4. iPSC/1 Node Assignments and Communication for Implementa-

tion #4 . . . 5-9
5.5. iPSC/1 Node Assignments and Commu.iication for Implementa-

tion #5 . . . e 5-11
5.6. iPSC/1 Node Assignments and Communication for Implementa-

tion #6 . L 5-12

Figure
5.7.

5.8.

5.9.

6.1.

6.8,

6.9.
6.10.

6.11.
6.12.

iPSC/1 Node Assignments and Communication for Implementa-
tion #7

iPSC/1 Node Assignments and Communication for Implementa-
tion #8 . . . L.

Encore - Implementationo

Speed up Graph for Comparable Implem :ntations on Differeni Ar-

chitectures e,

Speed up Graph for Comparable Implementations Excluding Iui-

tialization Overhead oL
Overhead Times for Implementations
Normalized Overhead Times (% of Execution Time)

Average Time to Load Node Processors versus Number of Unique

Processes o
Speed up Graph for iPSC/1 Immplementations

Progress of Sequential Simulation and Implementation #7 (32 nodes)
on the iPSC/1

Instantaneous Speed up for one 32 node trial of Implementation #7
ontheiPSC/1

Dynamic versus Static Data Partitioning

Replicated Process Efficiency in Static and Dynamic Data Parti-

LIONING L
Actual Speed up versus “Speed up Limit” for the Encore

Actual Speed up versus “Speed up Limit” for iPSC/1 Implementa-
tion #7 . . L L

X1

Page

5-13

5-15

5-20

6-7
6-8
6-9

6-10

6-11
6-13

6-15

6-16
6-17

6-18

6-21

Table

4.1.
4.2.

-

5.1.

6.1.
6.2.

R.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.
C.7.
C.S8.
C.9.

List of Tables

FORTRAN Funcuion - Logicai Function Equivalence . .
FORTRAN Function - Unix Profile results

Encore Parallel BMDSIM Speed up Limits

Summary of iPSC Implementation Results

Encore Parallel BMDSIM Results

BMD Simulation data descriptions and sizes
BMD Simulation data descriptions and sizes (Continued)
BMD Simulation data descriptions and sizes (Continued)
BMD Simulation data descriptions and sizes {Continued)
BMD Simulation data descriptions and sizes (Continued)

BMD Simulation data descriptions and sizes (Continued)

BMD Simulation data descriptions and sizes (Continued)
I)

iPSC/1 Implementation #1 Estimated Results
iPSC/1 Implementation #2 Results
iPSC/1 Implementation #2 Overhead Time (seconds) .
iPSC/1 Implementation #3 Results
iPSC/1 Implementation #3 Overhead Time (seconds) .
iPSC/1 Implementation #4 Results
iPSC/1 Implementation #4 Overhead Time (seconds) .
iPSC/? Implementation #5 Results

iPSC/1 Implementation #5 Overhead Time (seconds) .

C.10.iPSC/i Implementation #6 Results

X1i

B-1
B-2
B-3
B-4

B-6
B-7

C-1

5
o

C-

Lo

a
[S]

C-3
C-3
C-4
C-14

Table Page
C.11uPSC/1 Implementation #6 Overhead Time (seconds) C-5
C.12.iPSC/1 Implementation #7 Results C-6
C.13.1PSC/1 Implementation #7 Overhead Time (seconds) C-6
C.14.iPSC/2 Implementation #7 Results C-6
C.15.iPSC/1 Implementation #8 Results C-7
C.16.1PSC/1 Implementation #8 Overhead Time (seconds) C-7
C.17.Encore Parallel BMDSIM Results C-8
C.18.Encore Parallel BMDSIM Efficiency -9
C.19.Encore Parallel BMDSIM Overhead Times C-10

i

AFIT/GCS/ENG /89D-10

Abstract

Distributed simulation is an area of research which offers great promise for
speeding up simulations. Program parallelization is usually an iterative process
requiring several attempts to produce an efficient parallel implementation of a se-
quential program. This is due to the lack of any standards or guidelines for program

parallelization.

In this research effort a Ballistic Missile Defense (BMD) time driven simulation
program, developed by DESE Research and Engineering , was used as a test vehicle
for investigating parallelization options for distributed and shared memory architec-
tures. Implementations were developed to address issues of functional versus data
program decomposition, computation versus communications overhead, and shared

versus distributed memory architectures.

Performance data collected from each implementation was used to develop
guidelines for implementing parallel versions of sequential time-driven simulations.
These guidelines were based on the relative performance of the various implementa-

tions and on general observations made during the course of the research.

X1V

AN EMPIRICAL DEVELOPMENT OF PARALLELIZATION
GUIDELINES FOR TIME-DRIVEN SIMULATION

I. Introduction

1.1 Why Distributed Simulation?

Distributed simulation has received much research attention in the last decade.
The principal goal of distributed simulation is to improve the performance of sim-
ulations, usually with respect to time. Simulation is commonly recognized as a
computationally intensive activity (5, 15, 24, 34, 35, 40). The increased availability
of cheap, powerful microprocessors has resulted in commercially feasible multiproces-
sor computer systems, which, in turn, has increased the opportunities and incentives
for development of distributed simulation methods (18). Distributing a computa-
tional process across multiple processors increases the computing power applied to
a specific problem, and should reduce the “real time” needed to solve the problem.

This is the essence of distributed simulation and of parallel computation in genecral.

According to Gilmer and Hong, “Parallel processing offers the possibility of
greatly increased performance for simulations which are computationally bound on
existing machines” (15:430). Computation time for many important simulations is
prohibitive with even the fastest sequential computers. For example, Quinn states
that a simulation to produce a 24-hour weather forecast for New York, Washington,
D.C., and Philadelphia would require 24 hours to complete on a 100 megaflop sequen-
tial computer (the equivalent of a Cray-1). This type of time constraint is common
to the areas of weather prediction, aerodynamics, artificial intelligence, analysis of
satellite information, nuclear reactor safety, large digital logic circuits, and military

simulations (35:2).

1-1

1.2 The Simulation Process

Biles defines simulation as “the development of a mathematical-logical model
of a system and tle experimental manipulation of the model on a digital com-
puter” (5:7). Similerly, Banks and Carson define it as “the imitation of the operation
of a real-world process or system over time” (1) and Shannon calls it “the process
of designing a model of a real system and conducting experiments with this model
for the purpose either of understanding the behavior of the system or of evaluating
various strategies for the operation of the system” (40). The two basic concepts
common to these definitions are to produce a model of a system, and to perform

experiments using that model.

Simulation models are the mechanism through which simulation occurs. Mod-
els are designed to encapsulate the essential features of the system under study (5).
Computer models must be consiructed in terms of computable functions and, as
such, require the adoption of a particular view or paradigm of the system. The
resulting model represents the simulation view of the “real world™ or at least those
aspects of interest to the experimenter (34). This system model is what is translated

into a computer program and implemented as a simulation.

1.2.1 Simulation Categories Simulation models fall into three general cate-
gories according to Pritsker. Discrete simulation models, also called discrete event
models, involve dependent variables which change discretely at specified points in
simulation time referred to as event times. The time variable is either continuous or
discrete, depending on whether the event times can occur at any point in time or
only at specified points. Continuous simulation models, known as time driven mod-
els, have dependent variables which change continuously over simulated time. Such
models are either continuous or discrete in time, depending on whether the values
of the dependent variables are available at any point in simulated time or only at

specified points in simulated time. Combined simulation models are characterized

1-2

by dependent variables which change discretely, continuously, or continuously with
discrete changes superimposed. The distinguishing feature of these simulations is

the interaction between discretely and continuously changing variables (34).

1.2.2 Implementation Languages Biles lists three general classes of languages
for implementing simulation models. High order languages such as FORTRAN, C,
Pascal or Ada may be used for the implementation. General purpose languages, such
as GASP-1V, Simscript, and SLAM-II, provide more direct support for accepted
simulation practices. In some instances the model implementor may benefit from
using a special purpose language, such as GPSS, though these languages are geared
primarily to a very specific area of application (5:9). High order languages are
most common in current distributed simulation work because few general purpose

or special purpose simulation languages are available on multiprocessor systems.

1.8 Distributed Simulation

Kaudel identifies three kinds of parallelism in simulation models which can be
exploited to speed up parallel implementation of these models. Executing multiple
independent trials of a simulation model is considered application level parallelism.
Performing simulation overhead activities on separate processors, while retaining an
essentially sequential simulation model, is support function distribution. Execution
of a spatially decomposed model is model function distribution (27). Jones proposes
an alternative approach to distributing the model based on temporally decomposing
the model in a manner similar to instruction pipelining, though it could be argued

this approach is an extension of Kaudel’s model function distribution (26).

1.3.1 Current Research Distributed simulation models fall into the same cat-
egories as general simulation models. They can be discrete event, time driven, or a
combination of the two. The majority of recent studies have addressed the category

of discrete event simulation. Current research (4, 14, 23, 29, 30, 31, 36, 37) has also

1-3

concentrated on the model function distribution approach to model decomposition.
In all cases there is agreement that distributing a simulation across multiple pro-
cessors can decrease the execution time of simulations. However, simulation model
distribution has a price. Implementation is made more complex by the decisions
to be made during model decomposition and by the effects these decisions have on

simulation performance (2, 10, 28, 31, 40).

Distributed simulation introduces problems into the simulation model which
are not present in sequential simulations (6, 7). Early distributed computing para-
digms recognized the potential for deadlock in any system of communicating pro-
cesses (19). Additionally, while partitioning the model among several processors
increases the amount of work which can be accomplished over any period of time,
the overhead incurred in distributing the model may be more than the benefits gained

by partitioning the model in the first place (18).

Many model level concerns unique to distributed simulations depend on the
kind of parallelism exploited in distributing a simulation model. Application level
parallelism introduces few unique problems in maodel implementation because each
independent triz!, by definition, is simply an instance of a sequential model. The
problems introduced are primarily resource contention problems, similar to the prob-
lems faced in operating systems. For this reason it has received little attention in
the literature (27). Through his experiments, Comfort discovered support function
distribution is limited by the amount of parallelism present in the support func-
tions (accurmnulating statistics, managing event lists, generating pseudorandom num-
bers, etc.) and the portion of computation required to accomplish these functions.
Comfort’s results revealed that minimal speed up can be expected when applying
support function distribution (11). For these reasons, model function distribution

has received most of the research attention.

1-4

1.3.2 Hardware Perspectives One of the major factors making distributed
simulation research feasible has been the introduction of commercial multiprocessor
systems. The hardware architecture selected for the simulation implementation can
have a profound effect on the efficiency of a given simulation model (2, 10, 28). There
are two basic types of multiprocessor systems available. One type is composed of
processing elements, each with its own local memory, tied together via an intercon-
nection network used for passing messages. These systems are known as distributed
memory systems, examples of which are the Intel iPSC family ard the BBN But-
terfly. The second type is shared memory systems, which are characterized by a
collection of processors which access a large, usually partitioned, memory space, and
whose processors communicate via the memory system. The shared memory systems
have the advantage of not requiring explicit message passing and its associated trans-
mission delays, but they are limited by ti.c number of processors which can be in
the system due to the increased memory bandwidth required to allow concurrent or
shared memory accesses with minimal memory contention (20). Examples of shared

memory systems are the Encore Multimax, and the Sequent Balance.

1.3.8 Research Approaches Bryant and Chandy-Misra were at the forefront
in proposing approaches to solving the problems inherent in distributed simula-
tion (6, 7). Further research has lead to the identification of approaches as either
conservative or optimistic. According to Reynolds, “Algorithms are conservative if
they satisfy the property that no process receives information from any other process
that predates the current simulation time of the receiving process” (39). Some of
the approaches considered conservative include deadlock detection (9), SRADS (38),
appointments (32), and conditional events (8). In contrast, Reynolds identifies algo-
rithms as optimistic “if processes can act on incomplete information, thus admitting
the case where messages may arrive “in the past™” (39:325) (Quinn calls this relaz-
ation in reference to general parallel program design (35)). The optimistic approach

is based on the concept of “virtual time” proposed by Jefferson and Sowizral (23, 24).

1-5

The best known example of optimistic algorithms is the Time Warp operating sys-

tem, developed by Jefferson et al. (25).

Typically, researchers view approaches to the problem of distributed simulation
as falling into one of these two categories. However, Reynolds contends there is a
“spectrum of options” for which these two categories only represent different portions
of the spectrum. Reynolds also proposes a method of describing approaches within
the spectrum and demonstrates his method by developing descriptions of some of

the most commonly recognized approaches (39).

1.3.4 Implementation Concerns The selection of an approach to solving prob-
lems in distributed simulation only addresses part of the difficulty of implementation.
Decomposing a system, using Kaudel’s kinds of parallelism, requires careful attention
to the process of mapping the implementation to an available architecture (2, 31).
When properly accomplished, a simulation model is distributed across a computing
environment in such a way as to minimize communication between processors while
balancing the workload so all processors are performing under essentially the same
computationai load (18, 31, 39). Mapping model processes to physical processors
is further compounded by variations between the architecture a simulation is orig-

inally targeted for and the architecture on which it may eventually be required to

run (10, 28, 42).

1.4 Problem Statement

Distributed simulation, as an area of research, is still in its infancy. Nearly
all work which is being done in the area is empirically based. Simulations are de-
composed in an ad hoc manner to address the concerns of load balancing, process
communication, selection of architecture, and overall decomposition approach. Usu-
ally, a researcher will try a decomposition and mapping for whatever architecture is

available, collect statistics on the simulation performance, and accept or reject the

1-6

decomposition and mapping based on the collected statistics.

One of the major problems with distributing simulations is the lack of guide-
lines or heuristics for the decomposition, process mapping, and architecture selec-
tion. The amount of information required and the level of effort necessary to make
informed decisions for these important aspects of simulation have led to the ex-
perimental approach to decomposition, process mapping, and selection of a target
architecture. For distributed simulation to become practical, it is necessary to for-
malize these decisions to the extent that decisions, based on an understanding of the
distributed simulation process, can be made with incomplete information and with

reasonable certainty of improving performance.

A formalized approach is particularly important for the process of “paralleliz-
ing” an existing simulation. Virtually all existing simulations are implicitly sequen-
tial in their design and implementation. For these simulations to take advantage of
the performance offered by distributing their processing in a parallel environment,
intelligent decisions must be made to decompose them into parallel processes which

can then be mapped to a selected architecture.

The goal of this effort is to develop a set of guidelines or a methodology for
distributing existing sequential simulations. These guidelines include methods for
performing simulation decomposition, selecting an appropriate synchronization ap-

proach, and selecting an appropriate architecture for the distributed simulation.

1.5 Scope

This research effort is limited to the area of time driven simulation. Spe-
cific topics considered include methods of analyzing and decomposing simulations to
represent the parallelism in the simulation, selection of functional and/or data parti-
tioning for multiple processors, choice of an implementation approach (“optimistic™,
“conservative”, etc.), and selection of a specific architecture for implementation of

the distributed simulation. These topics are not completely independent, and the

1-7

interactions between them are also addressed in this effort. The area of distributed

discrete event simulation will not be addressed in this effort.

1.6 Approach

The Ballistic Missile Defense simulation, hereafter referred to as the BMD
simulation or BMDSIM, was used as a test vehicle for this research effort. This
simulation is a time driven battle management simulation which exhibits many of
the computational characteristics of the “typical” battle management /command and

control simulations used for military simulation.

The first step in this effort involves a detailed analysis of the existing sequential
simulation to determine the data dependencies and relative computational loads of
the functional modules of the siniulation. This requires both compile and run time
analysis of the source code using source code analyzers and profiling tools available

under the Unix operating system.

Several methods are applied to characterizing the functional parallelisim within
the sequential simulation. Both verbal and graphical representations are used. Data
flow diagrams and process dependency graphs of the existing functions are created to
represent and understand the possible decomposition, and the dependence of these

decompositions on the sequential programs data and control flow.

Once the parallehsm has been expressed. the representations are used to map
the independent functions to an Intel iPSC/1 Hypercube parallel architecture rep-
resenting the class of distributed memory machines. Once a distributed version of
the simulation is running on this architecture, modifications are made to the run-
ning simulation to eva.aate the performance of the simulation with respect to the
simulation approach taken, the number of processors used, and the structure of the
functional decomposition and their effect on the overall performance of the sim-
ulation. A data decomposed system is implemented on the same architecture in

order to compare the relative performance of alternative simulation decompositions.

1-8

-

The same implementation and evaluation steps are then performed for an Fncore

Multimax coinputer representing the class of shared memory architectures.

Performaice results from these implementations are evaluated for execution
time, efficiency, and “speed up”. In addition, the ease of implementation is also
addressed, but this is of necessity a subjective measurement. The performance results
are finally correlated to the characteristics of the simulation and the architecture used

in the program implementation.

The final result of this thesis effort is a set of guidelines based on the preceding
steps. The correlated performance resalts and experiences during this process pro-
vide the criteria for development of the guidelines. The guidelines include “optimal”
architecture and simulation approach selection based on the characterization, and

methods of compensating for “non-optimal™ architectures.

The approach outlined here was selected primarily because of the availability of
existing simulations and hardware at the Air Force Institute of Technology. Since the
BMD simulation was available, and its sequential execution exhibited the extensive
computational requirements common to many of the candidate areas for distributed
simulation, it seemed suitable as a test vehicle for this research. In addition, the
availability of the Intel iPSC/1 Hypercube and the Encore Mu’' 1ax made them

logical choices as representatives of their respective architectures.

1.7 Overview of the Thesis

The remaining chapters of this thesis represent the body of research developed
in this effort. Chapter 2 is an analysis of the major issues in parallel simulation which
affect the potential performance of a parallelized simulation. Special attention is paid
to issues specific to the areas of simulation and time driven simulation. This chapter
concludes with issues related to the problem of parallelizing existing programs and

simulations.

19

Chapter 3 provides background information on the specific architectures used
during this effort. Architecture details are supplemented with message passing char-
acteristics for distributed memory systems and memory and bus information for

shared memory systems.

Chapter 4 is a general processing description and program analysis for the
sequential BMD simulation. This information is necessary to understand the various

implementations of the simulation created during this effort.

Chapter 5 then describes each of the parallel implementations for the BMD
simulation. This information includes a general description of each implementation,
the rationale for the implementation, and a statement of the expected performance

of the simulation.

Results for all implementations are contained in chapter 6. This chapter also
includes an analysis and comparison of the results, which is then used to develop a

final set of guidehines.

The conclusion, contained in chapter 7, summarizes this thesis and recommends

arcas for further research.

II. Issues tn Parallel Stmulation

Any discussion of parallel simulation requires an understanding of the major
issues involved. This chapter outlines some of the issues to be considered both in
parallel simulation and parallel programming in general, though the emphasis is on

simulation.

2.1 What are the issues?

2.1.1 Feasibility When is it possible to parallelize a program? It is generally
recognized that any program with a set of independent processes is a candidate for
parallelization. Unfortunately, many programs exhibit complex dependency rela-
tionships which makes identification of independent processes more difficult. Misra
noted “the typical simulation algorithm does not easily partition for parallel execu-
tion” (29). Most programs are composed of a set of procedures and functions which

have either time or data dependencies (precedence ordering).

These dependencies can be identified by creating a dependency graph of the
processes to be executed. This graph represents the time and data dependencies ex-
plicitly with arcs between nodes (where the nodes are processes and the arcs represent
dependencies). Data dependencies are determined by intersecting the domain and
range of each process with the ranges of other processes. Any non-empty intersection
indicates a data dependency exists between the two processes. In contrast, the time
dependencies are identified by the control structure of the simulation algorithm and

the procedures and functions used to implement the simulation.

The data granularity used in identifying independent tasks will affect the per-
ception of the candidate program as either feasible or infeasible. For example, on a
macro scale a data structure may appear in both the range and domain of two sepa-
rate processes. At this level of observation, a dependency relation exists between the

two processes. If the same components of the data structure are used or modified

2-1

by the processes, the dependency does exist. However, if the processes use separate

components of the data structure, no dependency exists.

The overall structure of this dependency graph can have one of three general
patterns. An acyclic directed graph with multiple paths would represent a typical
discrete event simulation with no feedback. For example, a graph for a car wash

simulation might be represented by Figure 2.1. In contrast a typical time driven

Figure 2.1. Dependency Graph for A Car Wash Simulation

simulation would be represented by a directed graph with at least one cycle. A sim-
plified graph of the inner loop of the BMD simulation, Figure 2.2, is an example of
this sort of graph. The final dependency graph pattern a program might have is an
acyclic single path directed graph or pipeline. This type of graph is a good represen-
tation of an assembly line, Figure 2.3. While programs with a pipeline dependency
graph may be impossible to functionally decompose, data decompositions may be
possible depending on the computational dependencies between dzta items and any

relaxation of data interdependencies.

2.1.2 Interprocess Communication For processes to obtain the data needed
in a distributed processing environment, some mechanism must exist to exchange
information. The hardware mechanism used is determined by the type of architecture
used for program implementation. Distributed memory systems use message passing

through interconnection networks as the means of exchanging information, while

2-2

MIRVIS

ASSIGN

Figure 2.2. Simplified Dependency Graph of the BMD Simulation

shared memory systems can use shared data (or message passing via operating system
features such as Unix pipes and sockets or other mechanisms) as their means of

exchanging information.

System overhead associated with communication is determined, in part, by the
mechanism used and the way it is implemented. The Intel iPSC architectures used in
this effort provide examples of distribuied mcmory (message passing) systems with
and without co-processors t. handle interprocess communication. Another factor
affecting the communications overhead is the interconnection network of the system.
In a fully connected system the overhead for communication between any two pro-
cessors is not a function of which two processors are communicating. In a non-fully
connected system this overhead becomes a function of the number of intermediate

processors which must relay the message traffic between the two “communicating™

2-3

source

J

process A

Al
VA

process B

3\

sink

()

Figure 2.3. Dependency Graph of an Assembly Line

processors.

2.1.8 Synchronization In sequential simulation a single process maintains the
system state and executes in the order prescribed in the simulation design. No com-
putations can occur out of order and process synchronization is controlled by the
program instruction pointer. When simulation computations are distributed across
multiple processors (Multiple Instruction Multiple Data) in a parallel architecture,
the instruction pointer is no longer a dependable mechanism for coordinating com-
putational activity because each processor has its own pointer into the code it is

executing.

Synchronization is necessary between processes which must share or exchange
information. In distributed memory systems, the only dependable means of syn-
chronizing computation is through message passing. Clock skew between proces-
sors makes the use of system count down timers or wall time unpredictable as a
synchronization mechanism. Since the goal of parallel processing is to apply more
computational resources to a problem, minimizing synchronization overhead is one

of the primary activities of problem dccomposition. The desired result is that each

2-4

process spends more time computing rather than synchronizing with other process.
Shared memory systems generally have less overhead for process communication and

synchronization.

2.1.4 Deadlock Deadlock is usually defined as a state where all processes in
a set of processes are blocked; and each is waiting for an event which can only be
caused by another process in the set (33:275). This requires the conditions of mutual
cxciusing, held and wait resources, no recource precmption, aud clicular wait. o5
simulations, deadlock refers to the situation where the simulation does not progress

{simulation time does not increase).

Deadlock in discrete event simulation is primarily due to the message traffic
between logical processes and the use of event times to advance the simulation clock
of each logical process. Each process is expected to process events in simulation time

order.

The “conservative” programming paradigm requires all processes which receive
events from more than one other process to wait until each input process sends a
time stamped event. This guarantees that the process receives no events from “the
past”. Each process keeps track of the time of the last event received from each one
of its input processes. The loca. simulation time for each process is the minimum
time of the last events received from each of its input processes. When this minimum
time changes, the process updates its local simulation clock to this new minimum
by processing any pending events with times less than the new simulation time. In
this case, deadlock occurs when a feedback loop exists between logical processes in
the simulation. A similar situation occurs when a process never receives an event
from one of its input processes. While the simulation may be correctiy simulating
the system and no events should be generated by the specific input process, the
logical processes “down stream” from the process will not be able to advance their

simulation time. Current resear~h in “conservative” methods of deadlock avoidance

2-5

concentrates on variants of the Chandy-Misra Algorithm (7).

The “optimistic” paradigm avoids deadlock by allowing each process to proceed
based on the basis of its current event queue. If an event from the “past” arrives,
a process will “roll back” to the simulation time in the past when the event should
have arrived. Once the roll back is accomplished, the process continues processing
events from the new simulaticn time. “Optimistic” methods require large amounts
of data to be saved to allow each process to roll back to the “past”. In addition,
the same events may be processed several times by a logical process due to roll
backs. Among the “optimistic” methods currently being researched is Jefferson’s
“time warp” system, which creates anti-messages during process roll back to “undo”

processing which should not have been done based on the just-arrived message (25).

Deadlock in time driven simulations is usually the result of an incorrect pro-
gram design. The global simulation clock ensures progress. Each process depends
on the concept that all simulation processes are at the same simulation time so mes-
sages and data from the “past” cannot be sent by other processes. An improperly
designed simulation allows the global simulation time to be incremented before some

process has finished its processing for the previous simulation time.

2.1.5 Load Balance ldeally, a parallel program will be distributed so each
processor will have the same computational load. Assuming no serial dependencies,
increases in overhead, or improvements in efficiency for a parallelized algorithm, we
would expect a speed up of N from a system with N processors with perfect load bal-
ance. The uniformity and consistency of the computations to be performed will often
determine whether it is possible to decompose a simulation to equitably distribute
the load. In the worst case, a single process will perform nearly all computations,
resulting in that process limiting the speed up attainable. If the longest running
process distributed in the simulation performs } of the processing in the sequential

simulation, the maximum speed up for the parallel simulation will be f.

2-6

Load balance is not a static condition for many computations. This compli-
cates the process of partitioning the program among the available processors. The
programmer must decide whether to statically partition the problem or to attempt
to perform dynamic load balancing. Static load balancing simplifies the problem
by assuming that some average load balance will provide a suitable speed up. The
alternative is to periodically rebalance the computational load. This dynamic rebal-
ancing introduces additional overhead in determining both when to rebalance, and

how to repartitica vhe program.

2.1.6 Determinism Sequential programs are deterministic. For a given se-
quence of input data, output results are identical for any number of trials executed.
When a program is distributed, the instruction pointer no longer provides the con-
trol needed to ensure consistent results between trials. Whenever computations or
data items capable of influencing program output can be processed in a random
order, a program is no longer deterministic. When designing a parallel program or
parallelizing an existing program, it is necessary to determine the importance of a
deterministic output. From a testing standpoint, a deterministic program provides

an easier platform for determining whether a program or simulation is valid.

In many simulations determinism is necessary, because the systems being simu-
lated are deterministic systems. For such simulations program design is complicated
when using a data decomposition to distribute the simulation, because data may be
received in a non-deterministic order from replicated processes. Adding determinism
to a non-deterministic simulation may add to a distributed simulation’s computa-
tional, synchronization, or space requirements depending on the mechanism used to

provide the required determinism.

2-7

2.2 Conservative, Optimistic, or a Middle Ground

Parallel computations are generally thought of as being either conservative or
optimistic, based on the “quality” of information used for any computation and the
mechanism used to compute the correct result. Conservative computations do not
proceed until the data to be used in the computation is guaranteed to be correct.
No incorrect values are generated at any point in the computation. For parallel
computations this means all processes must wait until all input data is correct be-
fore proceeding. In contrast, optimistic computations continually execute based on
the “best” available information at the time of computation. Since inputs are not
guaranteed to be correct before computation begins, system state checkpoints are
maintained to permit rollback to known correct states when erroneous processing is
detected. Optimistic processes perform their computations at their own pace, with-
out waiting for other processes; however, potential rollbacks may mean a process will

perform the same computation a number of times.

As Reynolds suggested, a “spectrum” of possibilities exist between these two
extremes (39). Since feedback loops tend to reduce the inherent parallelism in a
simulation, a method of reducing the number of these loops or their frequency of
traversal could increase the options for parallelization. Feedback loops and the in-
formation they contain can be implicit in a sequential system. A common global
memory will have only one possible value for any given data item. In time driven
simulations the simulation state is often maintained between time steps by data
items in a global memory. In computations where the new simulation state is a
function of the old simulation state, these state variables provide implicit feedback

information for each AT.

However, some simulations contain nested loops where the values of these global
variables are modified within each time interval. The program state at the end of
the time interval may depend on the transitions of the state variable within these

nested loops. When a simulation is parallelized on a distributed memory system,

2-8

interprocess communication becomes the only method of making sure data item “A”
on processor 1 is the same as data item “A” on processor 2. If feedback loops are
eliminated or reduced in frequency during program parallelization, what happens if
the “A” used by processor 1 is not the “current A” for the simulation? Is it possible
to perform computations based on imperfect knowledge without requiring rollback?

What effect will these computations have on the simulation results?

This becomes an important issue when dealing with a data decomposed sys-
tem where replicated processes send intermediate results to a single non-replicated
process. If the single non-replicated process changes a “global” variable this is equiv-
alent to a critical section of a parallel program. If the non-deterministic completion
order of the replicated processes can effect the results of the simulation, what can

be done? Among the several options which exist are the following:

e Provide a synchronization mechanism to generate intermediate results in a

deterministic order.

e Accumulate the results on the non-replicated process, waiting until all repli-

cated processes have terminated, and process in deterministic order.
e Do not replicate the process computing intermediate results.

e Accept the non-deterministic output and correct based on some stored state

space in a process later in the computation.

e Accept the intermediate results as correct and continue processing. (This will
only apply in a case were determinism is not a necessary condition for the

simulation.)

e Determine an acceptance criteria for the intermediate results and accept only

those which meet the criteria.

In some cases eliminating feedback results only in unnecessary computations being

performed. In others, it may drastically affect the results of computations. While

2-9

elimination of these loops offers the potential of removing a synchronization require-
ment from a program, the purpose of the loop and its effect on computations must

be clearly understood.

2.8 Time Driven vs. Event Driven

The major difference between time driven and event driven simulation is the
mechanism for updating each process’s simulation time, and the predictability of
interprocess communication. Since time driven simulations operate in lock step,
the communication between processes occurs in simulation time order based on the
global simulation time. Each process in a discrete event simulation maintains its
own simulation time. Communication in this type of environment is less predictable
because messages may arrive in the past, or a process may wait for a message which
never arrives before incrementing its local simulation time (a form of deadlock). Dis-
crete event simulations eliminate the synchronization required by a global simulation
clock, and attempt to speed up simulation execution by not simulating time intervals
where nothing happens. The cost of this improved efficiency is that the resulting

simulation may deadlock.

An advantage the synchronization of time driven simulations provides is that
it reduces the possibility of program deadlock. Therefore, the mechanisms used to
prevent deadlocks in an discrete event simulation are not present to add to the over-
head of the simulation (specifically the overhead of null messages, deadlock detection,
deadlock recovery and other techniques of “conservative” methods, or the overhead

of checkpoint storage and process rollback associated with “optimistic™ methods).

2.4 Parallelizing Eristing Simulations

2.4.1 Deciding to Parallelize The purpose of a simulation is probably the
greatest single factor to be considered in the decision to parallelize an existing simu-

lation. A simulation which, for whatever reason, must take less time to execute is a

2-10

candidate for parallelization. This is especially important in time critical simulations
such as weather forecasting, or real time or interactive simulations such as aircraft
simulators. Unfortunately, while “parallel” compilers exist, they are capable only of
recognizing parallelism inherent in the source code (primarily looping constructs),
and therefore depend on the programmer’s ability to incorporate these structures
into the code. Monolithic data structures (those not indexed by the loop variable)
within loop constructs will usually defeat automated attempts at parallelization.
When the target system is a distributed memory architecture, parallel compilers will

most likely be unavailable to assist in distributing the simulation.

2.4.2 Level of Effort The decision to parallelize requires that the cost of the
effort be recognized. The effort depends on condition of the existing simulation,
its complexity, its level of docu.nentation, and the suitability of its algorithms for
parallelization. Another factor influencing the effort required is the familiarity of the

programmer(s) with the simulation.

According to Glover:

The single, most important, overriding tradeoff issue to be considered is
one of efficiency. Does the programmer rewrite large amounts of the pro-
gram to obtain a large speed up factor, or does the programmer rewrite
some of the program to obtain a modest speedup [sic] factor? (16:1)

One obvious goal in parallelizing an existing simulation is to reuse as much of the
sequential code as possible when parallelizing. The two primary advantages to this
are a reduced level of effort and a presumed level of confidence in the validity of the
existing code. Another issue which can add to the complexity and level of effort is
language compatibility. If the language of the original simulation is not supported
on the selected parallel architecture, the entire program must be converted. In
addition, language extensions used in the sequential simulation may not be supported

on the parallel architecture, adding to the work needed to parallelize the program.

2-11

In any event, the level of effort expended in parallelizing a simulation should be

commensurate with the expected benefits of that parallelization.

2-12

III. Parallel Hardware Architectures

This chapter describes the architectures used in this research. Message passing
mechanisms are explained for each of the distributed memory architectures because
the mechanism used is one of the major factors effecting overall system performance.
Memory locks are desc:ibed for the shared memory architecture because they are
most likely to cause similar performance problems for access to critical sections of

shared memory.

3.1 The Intel 1PSC/1

The Intel iPSC/1 Hypercube is a distributed memory architecture system. It
consists of a host processor and up to 128 processor nodes configured in a hypercube
topology. In a hypercube, each one of the n processing nodes has a direct connection
to logon other nodes, and these connections are determined by the node identifier
or address. Each node 0 to (n — 1) is connected to all nodes whose addresses differ
in one bit position when expressed in binary. Figure 3.1 is a representation of a 16
node hypercube topology. All communication between the nodes in the iPSC/1 is
via connected nodes, and if non-connected nodes exchange information, it must pass
through and be processed by (at least for routing purposes) intermediate nodes. This
means communication overhead is a function of the number of intermediate nodes

between communicating processes.

Each processing node in the iPSC/1 is an Intel 80286-based processor. Node
processors are configured with Intel 80287 math co-processors, 512K bytes of RAM.
and eight bidirectional communication channels, managed by dedicated Intel 82586
commumnication co-processors (seven channels for point to point node communica-
tions and one for a shared Ethernet channel to the host processor). Message size
in the iPSC/1 is limited to 16K byies, and the total number of 1K byte blocks

in transit (sent but not yet received by the application program) is limited by the

3-1

Figure 3.1. Interconnections in a 16 node hypercube

hardware configuration of the particular system. Messages larger than 1K by te are

automatically broken apart, sent, and reassembled at the destination node.

Node to node communication can be viewed as two distinct processes: sending
and receiving messages. Sending a message from a node application process involves

the following steps:

o The CPU determines the “next node™ for routing the message

e The CPU directs the appropriate 82586 LAN controller to start sending the

message
e The LAN controller reads the message out of RAM

o The LAN controller sends the message out on the point to point serial link

3-2

e The LAN controller initiates an interrupt to the CPU to report that the mes-

sage was sent
When a message 1s received at a node the following processing steps occur:

e A LAN controller receives a message from another node
o The LAN controller writes the message into RAM

e The LAN controller interrupts the CPU to report the receipt of a message and

provides the address of the message to the CPU

o The CPU checks to see if it is the destination node, if not then the message

must be sent using the steps outlined above

e If this is the destination, the CPU checks all processes running on the node to
see if a process has a pending receive request matching the received message
“type”. If such a process is found, the message is transferred from a system
buffer to that process’s receive buffer. If no receive is pending or the type does

not match, the message remains in the system buffer.

Message routing can be represented by Figure 3.2. Names on the left side of the
diagram represent names of the appropriate protocol layers from the seven layer
International Standards Organization’s (ISO) Reference Model of Open Systems
Interconnection (OSI), while names on the right indicate node component involved
in that layer. (The seventh layer, the presentation layer, is not needed in internode

communication.)

The host processor is also an Intel 80286-based machine with an 80287 math
co-processor, and it controls the configuration and operation of cube processors.
Each node communicates with the host processor via a shared Ethernet channel,
controlled at the host end by an Intel iISBC 186/51 communication board. All 1/0
between the node processors and the external environment (i.e., printer, screen, and

disk 1/0) is provided by the host processor.

3-3

Application
Node PROCESS-TO-PROCESS Node
Proc__gs/s/- WCQSS

Session Intermediate
Nodes
Transport| T 0° N T Message
o Handler
DI W
Network | N [N N S/
, \ 82586
) PL
Phy.sxca.l PL PL 8258
Link

Figure 3.2. Message Routing in the iPSC/1 (21:3-5)

3.1.1 AFIT iPSC/! Configurations AFIT has two iPSC/1 systems. One
system is designated as an iPSC/D5VX, and is a 5 dimension (32 node) hypercube
equipped with optional vector processor boards (one per node). The other system
is an iIPSC/D5MX, which is a 5 dimension hypercube with an optional 4 Megabyte

memory board for each node.

5.2 The Intel iPSC/2

The iPSC/2, an 80386-based system, represents Intel’s second generation hy-
percube architecture. While processor interconnections remain in a hypercube topol-
ogy, the host and node processor configurations and capabilities have changed. Of
particular interest is the mechanism for sending messages between nodes. Each node

processor contains a “Direct Connect Module” which

allows a message to be passed directly from any node processor to any
other node processor, passing through only the communications modules
without having to pass through intermediate node processors. This is
done by a logic switching arrangement. (22:2-16)

3-4

More time is spent setting up a message for the Direct Connect module then is spent
routing messages through the intermediate nodes’ Direct Connect modules. This
results in near uniform message latency between all nodes in the iPSC/2 whether
they are physically connected or not. Node processors are involved only when they
are the source or destination of a message, which increases the available time to

process the user application.

3.2.1 AFIT iPSC/2 Configuration The AFIT iPSC is a 3 dimension (8 node)
hypercube. While Intel offers optional memory and vector boards as well as a “disk
farm™ for additional mass storage, the AFIT system is not configured with any of

these options.

3.3 The Encore Multimar

The Encore Multimax is a fully connected, shared memory architecture, com-

posed of the following system components:

e Main system bus, called the Nanobus
e A system controller

e Processor cards (1 to 10)

I/0O channel cards (1 to (11 minus number of processor cards))

Mass storage cards (1 to 8) of 4 or 16 megabyte capacity

Component interconnections are shown in Figure 3.3. System components are
classified as requesters if they request use of the address bus but do not respond to
requests for data. Processors cards and 1/O channel cards are all requesters. Memory
cards, which do not issue requests for the address bus but respond to requests for
data, are classified as responders. The system controller acts as both a requester and a

responder. 1/O channel cards provide the Encore Multimax with access to Ethernets

3-5

]

& & Ejrnet &
Processor 1/0 Disk
Cards Channel Control
Cards H O Cards
A i
Tape
SCSI Bus Control
Card
] y__Nanobus
|
&
System Shared
Control Memory
Card Cards

Figure 3.3. Encore Multimax Functional Diagram (13:2-4)
and mass storage devices. The other components are discussed individually in the
following paragraphs.

The Nanobus is a fast bipolar bus, which provides a data transfer rate of 100
megabytes per second. This bus provides up to 12.5 million bus “transactions” per
second, separate parity-protected address and data busses, a separate 14 bit wide vec-
tor interrupt bus, a separate parity-protected control bus, bus transaction interleav-

ing, pipelined bus interfaces, and processor-memory interlocked operations (13:2-3)

The system controller performs the following functions (13:2-6):

e Supervises hardware fault diagnosis
e Performs environmental monitoring (power supplies and temperature)

e Provides interface to front panel switches and indicators

3-6

e Provides local and remote console terminal interface
e Mediates bus arbitration

o Generates bus timing signals

o Provides interval timing and time-of-year clock

o Controls system start-up, builds a configuration map of existing system re-

sources, sizes memory, and assigns optimum interleaving characteristics

Processor cards are comprised of two independent National Semiconductor
15 MHz NS32332 processors, each with a private 64K bytes cache memory, an
NS32382 15 MHz Memory Management Unit for 32-bit physical address genera-
tion, and a floating point accelerator unit using a Weitek WTK1164 multiplier and

a WTK1165 Arithmetic Logic Unit.

Each shared memory card provides 4 or 16 megabytes of random access memory
in two independent banks. Every card supports 2-way interleaving between banks
and 4-way interleaving between cards, permitting 8-way system interleaving. The
base address and interleaving characteristics of each card are set under software
control at system startup. Any byte in memory can be used as a multiprocessor
“lock™. Atomic Nanobus operations provide the ability to set or reset the locks. A
processor testing the state of a lock reads the contents into its cache, and subsequent
reads are from the cache, until the value of the lock changes. As a result the Nanobus

and memory card are not loaded by processes waiting for a lock to change state (13:2-

12).

3.8.1 AFIT Encore Configuration The AFIT Encore system has 8 processor
boards for a total of 16 processors. The system also has 32 Megabytes of main

memory and one /O channel card.

3-7

IV. The Ballistic Missile Defense (BMD) Simulation

This chapter describes the simulation used as a test vehicle for this research.
A general description of the programs operation is followed by an analysis of the

sequential program.

4.1 Use as a Test Vehicle

The BMD simulation, developed by DESE Research and Engineering, Incor-
porated, was used as the test vehicle for all applications programs developed in this
research. This simulation was developed as a research task sponsored by the Defense
Advanced Research Projects Agency (DARPA) under ARPA Order 3643 (12). The
program exhibits characteristics which make functional, data, or functional/data

hybrid decompositions possible.

4.2 Introduction and Description

DESE Research and Engineering developed two basic simulations. The first
simulation (designated BMDSIM-P) generates detailed numerical data for defin-
ing optimal physical parameters and performance requirements for Directed Energy
Weapon (DEW) systems. The second simulation (designated BMDSIM-G) provides
a graphical interface to display attack scenario simulation results (12:2-2). The
BMD simulation which forms the basis for all programs developed in this effort was
a preliminary version of these simulations. It simulates a ballistic missile attack
and the subsequent engagement by directed energy weapons. The term BMDSIM
will be used for all subsequent references to this baseline simulation and to generic

attributes of all derived simulations.

The original simulation was designed with the following guidelines and con-

straints:

4-1

¢ DEW systems were limited to concepts employing ground-based lasers and

space-based relay mirrors

¢ BMD models only boost-phase defense engagements against strategic ballistic

missiles
A booster engagement occurs in BMDSIM when the following conditions are met:

1. A booster is in boost phase and above a minimum engagement altitude

2. A geometrically feasible laser~to-booster link exists involving either one or two

space-based mirrors
3. All defense elements in the feasible link are available for engagement

4. Sufficient time remains before booster burnout to complete the engagement
(based on time to position defensive elements and time required to destroy the

booster)

If any of these four conditions are not met, the booster is not engaged. Figure 4.1

depicts the geometry of an engagement.

The time to start an engagement is determined by the time to orient the
laser and mirrors towards the booster. This time is the result of the orientations
at the end of the last engagement for each defensive element, and the individual
slew rates for the angles between the last engagement and the new engagement.
The engagement duration is determined by the distances between objects (RRPM,
RRM, and RRBM), the orientation of the laser (RPANG, divergence from vertical
orientation increases atmospheric attenuation of energy}), and the incident angle of
the beam as it strikes the booster (RIANG). These are the major parameters used to
determine the engagement time required to destroy the booster. For a more detailed

discussion refer to (12).

The overall functional structure of BMDSIM is represented in Figure 4.2. Ta-

ble 4.1 equates these function descriptions to the FORTRAN function names used

4-2

Orbiting Orbiting

Battle Mirror

\

Relay Mirror

_/

RRBM

RIANG

Ground Based

Laser

Figure 4.1. Ballistic Missile Defense Simulation Engagement Parameters (17)

in subsequent data flow diagrams and partitioning diagrams. This same structure

showing the equivalent FORTRAN function names is shown in Figure 4.3.

BMDSIM models the threat missiles in terms of “centerline” trajectories rep-
resenting threat “tubes”™ orglusters of ballistic missiles launched from a given launch
complex to a specified target area. [t is assumed that all numbers and types of ballis-
tic missiles entered as threat data are modeled by their centerline trajectories. The
boost phase trajectory is based on curve fits of detailed ICBM and SLBM trajec-
tory simulation data. Overall trajectory and orbital modeling after powered flight is

based on Keplerian equations. For further discussion, the reader is referred to pages

4-5 to 4-15 of (12).

Laser sites are modeled as fixed installations. All lasers are of equal power
(beam intensity), and project the maximum power to the first relay mirror when it

1s oriented perpendicular to the surface of the earth.

Mirrors are generated by BMDSIM based on the following parameters:

4-3

—

Initialize Initialize loop
Mirsror Booster over all
Orbits Tajectories

boosters

Determine all
Mirror
Positions

Determine ail -
Mirror.Laser Determine

Booster
Ranges & Angles Position

Determine
Mirror-Booster
Ranges & Angies

]

loop Form all
over all Feasible
lasers Assignments

1]
A |

Prioritize
Weapon
Assignments

foop
over all
Assign boosters
Weapons

Y

Display
Weapon
Assignment

Increment
Simulstion
Time

1

Figure 4.2. Functional Structure of BMDSIM

The number of mirror orbits

The number of mirrors in each orbit

e The radius of mirror orbits measured from the center of the Earth in kilometers

o The true anomaly offset between mirrors in adjacent orbits in radians

The initial right ascension, in radians, of the first mirror in the first orbit

measured counter clockwise from the Greenwich Meridian

If the true anomaly and initial right ascension are not provided, they are randomly

generated. All mirror orbits are modeled as circular, geocentric orbits of unifor. 1 alti-

4-4

Table 4.1. FORTRAN Function - Logical Function Equivalence

SBMIT Initialize mirror orbits
BOSTIT | Initialize trajectory for a single booster

SBMPOS | Determine all mirror positions for a given time

RRPVIS | Determine visibility, ranges and angles for all mirrors and a sin-
gle laser

TRAJ Determine booster position and velocity vectors

RRBVIS | Determine visibility, ranges and angles for all mirrors and a sin-
gle booster

MIRVIS Determine all geometrically feasible links for a laser booster pair,
by matching laser-mirror visibility, booster-visibility, and deter-
mining visibility and ranges between mirrors

LNKCAL | Calculate the time of engagement start and duration for all fea-
sible links for a laser boosster pair

LNKORD | Sort the set of feasible links for a given booster and all lasers
based on time of completion for an engagement

ASSIGN | Assign weapons for the best link where all defensive elements
are available for the engagement (not previously assigned)

tude. Visibility between mirrors and lasers is determined by zenith angle constraints
(RPANG in Figure 4.1), and calculations are completed for all mirrors which are in
the laser’s hemisphere and not currently engaged against a booster. Mirror-booster
visibility adds an additional constraint; if the incident angle (RIANG in Figure 4.1)

is less than a predefined minimum, the link is not considered.

4.3 Analysis of the Sequential Simulation

The sequential BMDSIM was analyzed for potential parallelism and execution
performance. In keeping with the idea of reusing as much code as possible in par-
allelizing an existing simulation, high level subroutines are viewed as the smallest
possible functional decomposition units. The modular approach DESE Research and
Engineering took in designing the source simulation made this view of simulation

functions possible. While reducing the set of decompositions considered, this system

4-5

]

SBMIT

BOSTIT

SBMPOS

—

v

RRPVIS

loop
over all
boosters

TRAJ

RRBVIS

P

J

N <

>y

loop
over all
lasers

MIRVIS
&
LNKCAL
N

;4

LNKORD

Y

loop

ASSIGN

over all
boosters

Y

Display
Weapon
Assignment

Increment
Simulation
Time

I

Figure 4.3. Functional Structure of BMDSIM with FORTRAN names

view simplified the task of identifying data dependencies and needed control struc-
tures. The primary devices used for high level analysis of this program were the
data flow diagram in Figure 4.4 and the calling tree of the original program shown

in Figure 4.5. Data structures represented in Figure 4.4 are defined in Appendix B.

A graphical display function was added to BMDSIM in a previous effort at
AFIT. This function allowed simulation results to be displayed on a color Sun 3
workstation. This function was excluded from the sequential analysis. Though an

Ethernet interface package exists to allow a Sun workstation to act as the host

4-6

XL DELTA
XLONY

RT DETAG
RL -
XLAT DRAO
XLON
JFBOT
BGAM
‘.y ORAT
H g RM
ITYPE
AL

\ ﬁ«?{ “

RRBvxs ;
YL"“@ e
’), 17—

AU
= \q{/

»

Y : XLAMDA

; DIAM

o BETA

A Y

NMLIK /’ * Y UPLFAC
TSLTR
NLASE 3 SEPAV
SLATC

NMIRL

AXMAXJ
PHASE XKF AXMIN

DALASM

Figure 4.4. Data Flow Diagram of Sequential BMDSIM

processor for the iPSC/1, no similar package exists for the iPSC/2 or the Encore.
All analysis emphasized the non-graphical versions for consistency between architec-

tures.

The Unix profiling capability was used to determine the relative amount of
time spent in each subroutine. Profile results are summarized in Table 4.2. Program
profiling is a useful tool for determining the relative computational load for program
subroutines. Once determined, this information can be used to indicate a general

approach to take in parallelizing a program. Due to the consumption of resources

Start of simulation
read in booster, mirror, laser, and control info
call BOSTIT - initialize all booster clusters
call SBMIT - initialize space based mirrors

Begin simulation time loop

SBMPOS - determine new mirror positions for
time T

RRPVIS - determine visibility between lasers and
mirrors at time T

Begin loop nver booster (clusters)

TRAJ - determine new cluster position vector

RRBVIS - determine visibility between
clusters and mirrors at time T

egin loop over lasers

MIRVIS - determine geometrically
feasible laser links

‘LNKCAL - determine the best “NMIRL" links
for this cluster from this laser

LNKORD - sort the best “NMLIK" links for this
cluster from all lasers

—— ASSIGN - select the best laser link
to assign to this cluster based on
min engagement completion time

Output information and increment time

Figure 4.5. Top Level Call Tree for Sequential BMDSIM

and destruction of booster clusters in BMDSIM, the computational load varies as
simulation time progresses. Since the profiling information indicates only an average,
performance predictions based on the results are estimates only. The accuracy of
performance predictions for any implementation will also be a function of whether

or not the implementation is deterministic.

Figure 4.6 is a simplified data flow diagram for the BMD simulation FORTRAN
functions. This graph does not represent all of the information which the main driver
program uses for control flow during the simulation. Simulation constants and some

of the time step variables have been removed to indicate the major data structures

4-8

Table 4.2. FORTRAN Function - Unix Profile results

BMDSIM Profile Results
% Avg ms

Function | Execution per

Time call
main 8.7 —
MIRVIS 51.4 37.24
LNKORD 20.9 15.49
RRBVIS 9.0 6.50
LNKCAL 5.8 4.76
RRPVIS 1.5 0.84
ASSIGN 0.6 0.20
TRAJ 0.5 0.22
SBMPOS 0.3 0.10
BOSTIT 0.2 0.07
SBMIT 0.1 0.03

required by each function.

The computational load in MIRVIS is the result of an exhaustive search for
feasible links. Using data item names from the source code, the search has a computa-
tional complexity of, O(NBOSTR*NLASER*((NSBMO*NSBMPO)**2)). Since the
predominant loop within each time step is over each booster, if NBOSTR proces-
sors were used, this search would still be O(NLASER*((NSBMO*NSBMPO)**2)).
Clearly this routine will limit the performance of any parallelization of the sequential

simulation.

The logical question at this point is, based on the analysis of the sequen-
tial simulation, why not decompose or parallelize MIRVIS? Decomposing this single
process was more complicated than was warranted by the expected benefits. The
primary result of a decomposition/parallelization of this process would be improved
performance in a functional decomposition. However, since any decomposition aimed
solely at this function wouid still have been in a loop construct nested within both a

simulation time loop and a loop over booster clusters, only a marginal benefit could

4-9

Figure 4.6. Simplified Data Flow Diagram of BMDSIM without constants

be achieved by rewriting this procedure alone.

4-10

V. Implementations of the BMD Simulation

The general strategy used in developing the implementations of BMDSIM was
to begin by creating a strict functional decomposition of the original simulation for
the iPSC/1. Once this first implementation existed, subsequent implementations on
the iPSC/1 were created to represent a progression from functional to data decom-
positions of BMDSIM. The “best” implementation was then ported to the iPSC/2
system. The original intent was to also port this “best” implementation to the En-
core. However, a separate Encore implementation was created to take advantage
of the programming environment available on the Encore. The program analysis
results from the previous chapter, including profiling results, data flow diagrams,
and data structure analysis listed in Appendix B were used in developing all parallel

BMDSIM implementations.

For all the implementations of BMDSIM, the functions and subroutines created
by DESE Research and Engineering were left intact. While this limited the possible
number of decompositions, it simplified the programming task. The trade off for this

decision i1s the maximum obtainable speed up. Speed up is commonly defined as

Time for Sequential Execution

Spe =
peed up Time for Parallel Execution

Since approximately 50% of sequential execution time is spent in one of these subrou-
tines, speed up for a purely functional decomposition must be less than or equal to

two. For a data decomposition the maximum speed up is more difficult to determine.

A speed up limit can be estimated for any implementation based on the equa-

tion
/

Specd up 1
~\f, + max/ = ’ 5.1
(Limit (f.+maxf,-> for i1=1,...,N (5.1)

5-1

where f, is the fraction of total computation which is sequential, f, is the fraction
of the parallelized computation performed on processor i, and N is the number of
processors. This equation is derived from Ahmdahl’s Law. The sequential fraction
of computation is based on the percent of computation performed by the “main”
procedure in the sequential simulation. The fractional values used in determining
the speedup limit depend on the accuracy of the Unix profiling tool. To determine

the fraction of computation for a replicated process requires the equation

j;:(\%—) for i=1....p (5.2)

where S; is the fraction of time spent in the process during sequential execution, R,
1s the number of processors allocated to replicated process 7, and p is the number of
processes. However, it must be noted this limit computation completely ignores any
overhead associated with process parallelization. Communication overhead for any
implementation usually increases as a function of the number of processors utilized
for the simulation. This is especially true in a system like the iPSC/1, where messages
between non-adjacent nodes interrupts the processing on intermediate nodes. In
addition, load balance for a replicated process is assumed to be perfect, and this is
seldom the case for MIMD systems. Additionally, there are two reasons why % is not
realistic. First, a certain percentage of process 1is independent of the data and will be
replicated R; times. Secondly, by basing the speed up limit calculation on the largest
fraction of computation, perfect overlap between processes is assumed. Therefore,

this speed up limit is only a very gross estimate of the potential performance of an

implementation.

5.1 Description of iPSC/! Implementation #1

The first implementation of BMDSIM was designed to isolate each BMDSIM
function on a separate processor. The decomposition is a purely functional de-

composition, and communications traffic was expected to be very heavy. Since ap-

5-2

proximately 50% of the computational load for BMDSIM occurs in one function,

performance of this implementation was expected to be poor.

Node . ¢
BOSTIT &
TRAJ
1%

Node - 2

SBMIT &
TTGO

7

QIR

2%

ASSIGN

LNKCAL
%

IASSGN
NMLIK

Node . 1
LNKORD

1%

DWELLT

Figure 5.1. iPSC/1 Node Assignments and Communication for Implementation #1

5.1.1 Decomposition Process This decomposition was a completely functional
decomposition of the original simulation. The main reasons for creating this decom-
position were to study the performance of BMDSIM’s sequential functions and the
effect of completely distributing the control structure of the sequential simulation.
Figure 5.1 represents the functional breakdown of this simulation, showing communi-
cation patterns, node mappings, and approximate percentage of computational load

for the simulation processes, excluding the host process and its initialization mes-

5-3

sages. No attempt was made to limit the number or size of messages in the system.
Since the DESE Research and Engineering functions were left intact, these func-
tions were used to partition the simulation for parallelization. This decomposition

maintains the deterministic behavior of the sequential simulation.

5.1.2 Parallelization Characteristics The major factors effecting the antici-

pated performance of this simulation are:

o Increased overhead to initialize the system, including time to load processes

into nodes and (o pass initialization data to node processes.
e Added overhead for interprocess communication between the nodes.

e Removed feedback loops associated with global data structures from within
time steps, which caused continued computation after resources were no longer

available.

e Majority (approximately 51%)of computations are performed in a non-repli-

cated process.

e Added inefficiency by spreading loop structures on multiple processors.

The speed up limit for this implementation, based on Equations 5.1 and 5.2 is

approximately 1.7.

5.2 Description of iPSC/1 Implementation #2

This implementation of BMDSIM was designed to reduce both the number
and size of messages passed from implementation #1. The decomposition is a purely
functional decomposition, with the majority of the computations being performed
by a single node. Computational overlap in this implementation occurs only between
the determination of feasible assignments, and the consumption of resources during

that assignment.

5-4

Figure 5.2 shows the assignment of BMDSIM functions to processes and node
processors. In addition, the approximate percentage of computation time from the

sequential program profiling is included, though the percent of sequential program

control derived from the “main™ routine 1s ignored.

* . also sent
to host
BOSTIT & TRAJ

Node . 3

SBMIT & SBMPOS

TIP
to host

1ZTAB

to host

RRBVIS, RRPVIS, MIRVIS,
and LNKCAL
88%

Figure 5.2. iPSC/1 Node Assignments and Communication for Implementation #2

5.2.1 Decomposition Process This decomposition was an attempt to reduce

the number and size of messages in the system while maintaining a completely func-
tional decomposition of the original simulation. Figure 5.2 represents the functional
breakdown of this simulation, showing communication patterns and node mappings
for the simulation processes, excluding the host process and it initialization mes-

sages. This decomposition maintains the deterministic behavior of the sequential

simulation.

5.2.2 Parallehization Characteristics Two versions of this implementation
were created. One version removed all feedback loops within each time step; the
second supplied feedback as defensive elements were consumed (when there was an
engagement in the time step). The removed feedback loops represented global data
items used to control program computation in the sequential simulation. Neither ver-
sion of this implementation was expected to execute in less time than the sequential

version of the simulation. The primary reasons for this were:

e The increased overhead to initialize the system, including time to load processes

into nodes and to pass initialization data to node processes.
e The added overhead for interprocess communication between the nodes.

e The removal of feedback associated with global data structures from loops
within time steps, which caused continued computation after resources no

longer available (first version only).

e The fact that a majority (approximately 68%)of computations are performed

in a non-replicated process.

Additional messages were added to provide the time step synchronization required in
a time driven synchronization since the number of clusters for which all calculations
are performed is not constant. Using Equations 5.2 and 5.1, the limit of speed up

for this implementation is under 1.3, (=-).

5.8 Description of iPSC/1 Implementation #3

Implementation #3 of BMDSIM was the first hybrid decomposition of the se-
quential program. The term “hybrid” indicates that it has characteristics of both
functional and data decomposition. It represented an effort to combine major compu-
tational functions within a single process which could then be replicated. A decision
was made at this point to allow non-determinism in the simulation. This decision

was based on the methods previously discussed for maintaining determinism when

5-6

processes are replicated, and the difficulties in implementing these methods on the
iPSC/1 (limited memory, and the increase in coding complexity, see page 2-9). As-
signments are made as feasible assignment information arrives at node 0 from nodes 5
through the total number of processors. No synchronization mechanism was created
to guarantee node 0 processed this information in the same order as the sequential

simulation.

Node . 3
BOSTIT &
TRAJ
1%

* . also sent
to hoet

Node - 1

TIP SBMIT &

to host

1ZTAB
LMIR
LLAS
to host

Figure 5.3. iPSC/1 Node Assignments and Communication for Implementation #3

5.8.1 Decomposition Process This hybrid decomposition required the cre-
ation of a mechanism for distributing computations to each of the replicated pro-
cesses. Though the control structure for this is only marginally more complicated
than the control structure required without a replicated process, the number of mes-

sages in the system is increased due to the increased number of processing nodes.

5-7

Since the iPSC/1 has a limit on the number of messages in the “sent but not yet re-
ceived” state, intermediate messages in the simulation were combined where possible
to decrease the amount of message traffic as much as possible. Figure 5.3 is a repre-
sentation of this implementation showing approximate computational load and node
mapping for simulation processes, excluding the host process and its initialization

messages.

5.3.2 Parallelization Characteristics The primary differences between this

simulation and the previous one are:

e The majority (approximately 79%)of computations are performed in a repli-

cated process, increasing the amount of overlapping computations.

e Permitting non-deterministic behavior avoided additional synchronization, mem-

ory requirements, and control logic in system processes.

¢ Combined messages to reduce the number of messages in the system.

Since approximately 79% of the computational load for this implementation was con-
tained in the replicated process, the limit for speed up determined by Equations 5.2
and 5.1 is 5.4 for both 32 and 16 processors, and 2.8 for 8 processors. The limit for
32 and 16 processors is the same because RRBVIS is the process which determines

these limits.

5.4 Description of iPSC/1 Implementation #4

Implementation #4 of BMDSIM was also a hybrid decomposition of the se-
quential program. It represented an effort to reduce the number of messages in the
system by replicating RRPVIS (laser-mirror range and visibility calculations). This
function was selected due to the size of the data structures it generated. Each data
structure generated by this function 1s 48,000 bytes in length, and iPSC/1 mes-

sages are limited to 16K bytes. In implementation #3, three messages were required

5-8

Node . 2
BOSTIT &
TRAJ

* . also sent
to host

Node - 1
SBMIT &

SBMPGS
1%

TIP
to host TTGQO

LLAS
to host

ARPVIS, MIRVIS,

Node - 0 g‘
ASSIGN LNKCAL, & LNKOR]J]
NBPCR *
1%

Ny

Figure 5.4. 1PSC/1 Node Assignments and Communication for Implementation #4

to distribute each data structure to the other processing nodes which required the

information.

5.4.1 Decomposition Process This decomposition was a direct modification
of the previous implementation. No new messages were required, and few existing
messages needed re-routing. A comparison of Figure 5.3 and Figure 5.4 reveals the

similarities between these two implementations.

5.4.2 Parallelization Characteristics The primary difference between this sim-
ulation and the previous one is the reduction in the nun.ber of messages. The com-
putational load for the replicated process increased by approximately 3% over the

previous implementation, with the addition of RRPVIS. Approximately 82% of all

computations are performed in the replicated process.

Since approximately 82% of the computational load for this implementation
was contained in the replicated process, the limit for speed up determined by Equa-
tions 5.2 and 5.1 is 5.4 for both 32 and 16 processors, and 3.3 for 8 processors. As
with implementation #3, the limit for 32 and 16 processors is the same because

RRBVIS is the process which determines these limits.

5.5 Description of tPSC/1 Implementation #5

Implementation #5 of BMDSIM was another a hybrid decomposition of the sc-
quential program. This decomposition extended the pattern of combining BMDSIM
functions into a single replicated process. Message traffic was reduced by incorpo-
rating RRBVIS into the replicated process, and making a “supervisor” node process
which allocated work to the replicated processes. This node process had no explicit
equivalent in the sequential program, but incorporated some of the control structure

within “main™.

5.5.1 Decomposition Process This decomposition was a direct modification
of the previous implementation. The major difference was the size and type of infor-
mation included in the messages between the “supervisor” node and the replicated
nodes. This message included only the number of boosters assigned to a replicated

process, and the booster identifiers (indices into booster information data structures).

5.5.2 Parallelization Characteristics This implementation was expected to
perform nearly as well as the previous implementation. With the addition of RRB-
VIS, the size and number of messages was reduced from implementation #4(only one
message from the supervisor process to each replicated process for any given time
step, rather than one message per booster cluster). However, the computational load

for the replicated process increased by approximately 9% over the previous imple-

5-10

Node - 2

BOSTIT & " - also sem

to host

Node . 1
SBMIT &
SBMPGS
1%

TIP
to host TTGO

Supervisor

to host

RRBVIS, RRPVIS,

ASSIGN MIRVIS, LNKCAL,
NBPCR *
1% ¢

" LNKORD

91%

Figure 5.5. iPSC/1 Node Assignments and Communication for Implementation #5

mentation. Approximately 91% of all computations were performed in the replicated

process.

The limits for speed up determined by Equations 5.2 and 5.1 are, 7.7 for 32
processors, 5.8 for 16 processors, and 3.1 for 8 processors. These are ideal limits

which cannot be reached in practice.

5.6 Description of iPSC/1 Implementation #6

This hybrid decomposition of the sequential BMDSIM program combined addi-
tional functions into the replicated process of BMDSIM. Functions BOSTIT, TRAJ,
SBMIT, and SBMPOS were added to the replicated process.

5-11

Node - 1

® . also sent

to host)

RB
TIP
R

to host

Supervisor

BOSTIT, TRAJ,
SBMIT, SBMPOS,

RRBVIS, RRPVIS,
ASSIGN NBPCR *
MIRVIS, LNKCAL.
1%
NKORD

& L
91%
a

Figure 5.6. iPSC/1 Node Assignments and Communication for Implementation #6

5.6.1 Decomposition Process This decomposition was a direct modification
of the previous implementation. All the booster and mirror position functions are
distributed to the replicated processes. The cher node processes received all booster
information from the process on node 2. The messages were sent to the “supervisor”
process, then ASSIGN node, and finally the host. This message traffic ordering
was used overlap “supervisor” process computation with the communication time
required to send the information to ASSIGN node and the host. The replicated
process also sent mirror position data to the host. The “supervisor™ and ASSIGN

processes did not require mirror position information.

5.6.2 Parallelization Characteristics The computational load for the repli-

cated process increased by approximately 1% over the previous implementation, with
the addition of BOSTIT, TRAJ, SBMIT, and SBMPOS. Approximately 91% of all

computations were performed in the replicated process. However, two additional

5-12

processors are available for the replicated process, and message traffic at simulation

clock synchronization was reduced.

The limits for speed up determined by Equations 5.2 and 5.1 are 7.9 for 32

processors, 6.2 for 16 processors, and 4.0 for 8 processors.

5.7 Description of iPSC/1 Implementation #7

This hybrid decomposition of the sequential BMDSIM program attempts to
introduce more computation communication overlap in the simulation. Functions
SBMIT and SBMPOS are placed in the process with ASSIGN, to overlap the com-
munication of mirror position with the start of booster engagement calculations in

the replicated processes.

® . also sent Node - 1

to host .
Supervisor

BOSTIT & TRA

Node - 24
BOSTIT, TRAJ,
SBMIT, SBMPOS,
RRBVIS, RRPVIS,
MIRVIS, LNKCAL,

& LNKORD
91%

Figure 5.7. iPSC/1 Node Assignments and Communication for Implementation #7

5.7.1 Decomposition Process This decomposition was a direct modification
of the previous implementation. All the booster and mirror position functions are
distributed to ‘he processcs requiring the position information. Mirror position func-

tions were added to ASSIGN node, though mirror positions are not required on the

5-13

node. This was done to make ASSIGN node the process which sends all position
information to the host processor, because it does not interact with the replicated
processes until they have completed processing of at least one booster cluster. This

delay provided the time to send booster and mirror positions to the host.

5.7.2 Parallelization Characteristics All improvements for this implementa-
tion were the result of understanding when processes waited for communication, and
what functions could be performed at those times. Each process required a synchro-
nization mechanism to increment its local simulation clock. Since it was possible
that a replicated process will have no boosters to perform calculations for, the syn-
chronization message was required. Updated engagement information was sent at
the end of each time step, indicating resource availability times for defensive ele-
ments. A process which completed calculations for all its boosters waited for this
update information before proceeding with the next time step. In the previous im-
plementation all processes waited for this information before proceeding. With this
imolementation, the supervisor computed its booster position data for the next time
interval while the replicated processes determined new mirror positions before each

waited for this update information.

The percent of processing performed by the replicated process is unchanged
from implementation #6. The limits for speed up determined by Equations 5.2 and

5.1 are 7.9 for 32 processors, 6 2 for 16 processors, and 4.0 for 8 processors.

5.8 Description of iPSC/2 Version of Implementation #7

This implementation was a direct transfer of the iPSC/1 version. Any differ-
ences in performance between the two versions was a direct result of the differences
between the method each system uses to pass message traffic (see Chapter 3). Speed
up limits are independent of the architecture used for an implementation, and are

the same as for the iPSC/1.

5-14

5.9 Description of tPSC/1 Implementation #8

This hybrid decomposition of the sequential BMDSIM program eliminates the
supervisor process by statically allocating specific booster clusters to each replicated

process.

* . also sent

to host

BOSTIT, TRAJ,
SBMIT, SBMPOS,
ERBVIS, RRPVIS,
MIRVIS, LNKCAL,

& LNKORD
91%

Figure 5.8. iPSC/1 Node Assignments and Communication for Implementation #8

5.9.1 Decomposition Process This decomposition was a direct modification
of the previous implementation with the “supervisor” node eliminated. Each repli-
cated process performed calculations for a subset of the boosters. No replicated
process performed these calculations for adjacent booster indices. This represented
an attempt to balance the computational load, based in part on the sample data set
used. Adjacent indices tended to follow the same trajectories if they are of the same
booster type and have nearly the same launch latitude and longitude. As a result,
boosters with adjacent indices were often engaged in the same simulation time step,

leaving a node with little or no computation for the next time step.

5.9.2 Parallelization Characteristics Speed up for this implementation was
expected to be slightly less than for implementation #7. Though an additional

processor was available for replicated processes, as the simulation progressed, load

5-15

balance would decrease. In the worst case, some processes would have no compu-
tations to perform while others would never have any boosters engaged (destroyed)

and would continue to perform all their calculations.

The limits for speed up determined by Equations 5.2 and 5.1 are 7.9 for 32

processors, 6.3 for 16 processors, and 4.4 for 8 processors.

5.10 Encore Implementation for the BMD Simulation

5.10.1 Implementation Description This implementation relied on the paral-
lel constructs in the Encore Parallel FORTRAN language. Each data parallel “DO™
loop in the sequential program was implemented as a parallel “DOALL™ construct.
Figure 5.9 provides a graphical depiction of the “parallel” sections of code, and the

sequential sections, where shared memory is updated.

5.10.1.1 Decomposition Process The Encore Parallel FORTRAN com-
piler provided automated parallelization of code. However, the existence of variables
which were not indexed on the loop variables prevented the automated parser from
recognizing the data parallelism in the loc > over booster clusters in the sequential
code. Therefore, this section of code was manually modified to create a parallel
section of code with appropriate local variables. The ASSIGN function became a
critical section of code because the values of the defensive elements needed to be

shared over all processors.

5.10.1.2 Parallelization Characteristics This implementation was equiv-
alent to iPSC/1 implementation #7 in that feasible laser-mirror-booster assignments
were determined and ordered in independent processes, while resources were com-
mitted in a “critical section” of code. This critical sectior of code is identified by
using the Encore Parallel FORTRAN construct “Critical Section”. Conceptually,
iPSC implementation #7 and this Encore implementation are identical with the

critical section equivalent to iPSC Node 0 process and the parallelized “DOALL”

5-16

loops equivalent to all other iPSC processes. The general strategy of the simulation
was to compute the feasible assignments for each booster in parallel and then to

commit resources in the critical section of code.

The speed up limit figures for the Encore implementation will prove to be an
even less accurate predictor of performance if Equations 5.1 and 5.2 are used. This is
due to the isolation of parallel computations from sequential computations in these
equations. Speed up limit figures for a shared memory processor can, instead, be

estimated by

Shared

Memory _ p] i (5.3)
Speed up - v

Limit

Where S; is the fraction of total computation performed by process 1 during sequen-
tial execution, R; is the number of processors performing replicated process t, and p
is the number of processes. For processes not in parallel sections of code, NV, is unity.

Table 5.1 summarizes the results of Equation 5.3 for BMDSIM on the Encore.

The absolute speed up limit for the simulation, using Equation 5.3 is 8.991,
and is determined by the maximum number of missiles in the simulation (NBOSTR
= 100). Theoretically, this implies a speed up of 9 can never be achieved with this

simulation, regardless of the number of processors applied to the problem.

5.17.1.3 FEzploitation of the Hardware The Encore operating system
provides a run time environment conducive to parallel processing. When a program
is compiled using a “parallelizing compiler” the resulting machine code checks an
environment variable at program startup, and creates the number of identical pro-
cesses determined by this environment variable (up to the number of processors in

the system). This provides each image of the process, with access to the shared vari-

5-17

Table 5.1. Encore Parallel BMDSIM Speed up Limits

Processors | Speed up Limit
I 1.000
2 1.817
3 2.496
4 3.070
5 3.561
6 3.987
7 4.359
8 4.687
9 4.978
10 5.238
11 5.473
12 5.685
13 5.837
14 6.011
15 6.169
16 6.315

ables, and eliminates the overhead required to create processes dynamically during
run time. As each parallel section of code is entered (a “DOALL” construct), these

processes are activated to perform a portion of the processing.

The shared memory architecture allowed program state variables to be shared,
and assigned either in non-parallel sections of code, or in “critical sections™ of the
parallei code (“critical section” refers to those sections of parallel code which modify
shared variables). No messages needed to be passed, and the critical sections of code

were controlled via the lock mechanism described in Chapter 3.

5.11 A Final Note on Parallel Implementations

The apparent bottleneck for all implementations of BMDSIM is the process
containing the procedure “MIRVIS”. Though the decision was made to keep the

original sequential functions intact in the parallel versions, a more realistic approach

5-18

for functional decomposition of this simulation would be to restructure all sequential
functions to reduce the amount of computation performed in any single process. This
restructuring implies changes to control and data structures used by each function
to reduce the data dependencies. Any shared data items or nested loops would also

be targets of any restructuring and rewriting of the original simulation.

5-19

rO
SBMIT BOSTIT
Y
SBMPOS
O
OO
i
loop
over all RRPVIS
lasers
O
roo
TRAJ
RRBVIS
MIRVIS
LNKCAL
........ LNKORD
o ASSIGN
Critical Display
Section Assignment
Increment
Simulation
Time

Figure 5.9. Encore - Implementation

5-20

loop
over all

boosters

loop
over all
boosters

VI. Empirical Results and Analysis

This chapter summarizes the results of each iinplementation of BMDSIM. All
execution times used in computing speed up are average times for the execution of
four or more trials of the simulation. Unless otherwise noted, execution times include
all phases of processing, including loading processes into processor memory for the

distributed memory systems and creation of processes in the shared memory system.

Speed up figures are derived from the execution of the sequential simulation
executed on an equivalent processor. For the iPSC/1 and iPSC/2, the host proces-
sor was used to obtain sequential execution data. Since all Encore processors are
identical, the sequential simulation was executed on a single Encore processor, after

being compiled with the non-parallel FORTRAN compiler.

Overall execution timing information was collected using Unix system calls
to determine the start and stop time of program execution. This provided a clock
resolution of one second. The implementation overhead measurements were obtained
from a one one-hundredth second resolution clock on the iPSC/1. No similar wall
time function call was available on the iPSC/2 (host processor CPU time is the only
available call); therefore, no overhead information was collected. Encore overhead

measurements are obtained from a one second resolution wall time function call.

Though several iPSC/1 implementations were executed with a Sun 3 work-
station operating as the “host” processor, these execution times are not included
with the overall performance measurements in this chapter. The graphical interface
provided by the Sun consistently required approximately one additional minute for
initialization over the overhead figures for non-graphical trials. Aside from this addi-
tional overhead, there was no significant difference between trials using the iPSC/1

host processor and using the Sun 3 workstation as the “host”.

6-1

An efficiency term is determined for each implementation, and is defined as

Efficiency = Speed up

Number of Processors (6.1)

This efficiency value indicates performance relative to linear speed up.

6.1 1PSC Implementation Results

A complete set of results for all implementations is contained in Appendix C.
Results for all iPSC implementations are summarized in Table 6.1. The speedup
figures include all initialization overhead. The Effj;mi¢ column in Table 6.2 represents
the efficiency of the given trial with respect to the estimated limit from Equations 5.1

and 5.2. The lin.it value replaces the number of processors in Equation 6.1.

6.1.1 1PSC/1 Implementation #1 This implementation of BMDSIM has never
run to completion. Based on partial executions of the implementation, a complete
trial would require approximately 2.5 hours to execute. This implementation was
not expected to perform well due to the additional overhead of message passing, and
the use of FORTRAN functions from the original simulation as the logical processes

implemented.

6.1.2 iPSC/1 Implementation #2 Program performance was as expected.
The primary problem with this functional decomposition was the lack of overlapping
processing. Based on the results of sequential program profiling, approximately 68%
of the computational load is in a single process, and only 22% of all other processing
can occur “in paralle]” with this process due to data dependencies. The addition
of feedback within simulation time intervals improved the overall performance of

this implementation by reducing the number of wasted computations on the heavily

loaded node.

6-2

Table 6.1. Summary of iPSC Implementation Results

Imple- Number | Overhead | Speed | Speed up
mentation | of Pro- Time up vS. Efficiency | Efftimi
cessors | (seconds) | Limit | Sequential
#1 8 — 1.7 0.2 0.025 0.118
#2 no fdbk 4 56.88 1.3 0.532 0.133 0.409
#2a fdbk 4 58.28 1.3 0.988 0.247 0.760
#3 32 61.40 5.4 1.552 0.049 0.287
#3 16 60.96 5.4 1.916 0.120 0.355
#3 8 59.92 2.8 0.924 0.116 0.330
#4 32 56.92 5.4 2.644 0.083 0.490
#4 16 56.68 5.4 2.674 0.167 0.495
#4 8 55.80 3.3 1.834 0.229 0.556
#5 32 55.74 7.0 2.520 0.079 0.327
#5 16 55.50 5.8 1.906 0.119 0.329
#5 8 71.20 3.1 0.506 0.063 0.163
#6 32 45.88 7.9 3.430 0.107 0.434
#6 16 45.24 6.2 3.118 0.195 0.503
#6 8 44.36 4.0 1.834 0.229 0.459
iIPSC/1 #7 32 52.16 7.9 4.529 0.142 0.573
iPSC/1 #7 16 50.62 6.2 3.428 0.214 0.553
iPSC/1 #7 8 49.72 4.0 1.762 0.220 0.441
iPSC/2 #7 8 — 4.0 1.929 0.241 0.482
48 32 52.70 7.9 4.061 0.127 0.514
#8 16 50.86 6.3 3.057 0.191 0.485
#8 8 52.52 4.4 1.633 0.204 0.371
6.1.3 1PSC/1 Implementation #3 This was the first version of BMDSIM

6-3

with a replicated process, and which produced non-deterministic results. One of the
major performance considerations for the iPSC/1 is process-to-node mapping. This
implementation was designed to dynamically determine the number of available pro-
cessors, and to use that number. As a result, the number of multihop messages in
the system increases as the number of processors increases (see description of mes-
sage passing in the iPSC/1 on page 3-2). These multihop messages interrupted the

processing on intermediate nodes, which reduced the amount of time spent working

on the portion of data allocated to those nodes. This explains the degradation in

performance between the 16 and 32 processor trials.

6.1.4 iPSC/1 Implementation #4 The additional 3% of computation added
to this replicated process resulted in one additional processor being available for
replicated processes. Speed up figures increased 70.4%, 39.6%, and 98.5% for 32, 16,
and 8 processors respectively. However, the multihop messages still case degraded

performance between the 16 and 32 processor trials.

6.1.5 iPSC/1 Implementation #5 This implementation was not expected to
perform better than the previous one. The work load in the replicated process
increased without a corresponding increase in the number of processors available to
execute the replicated process. Approximately 91% of the computational load for
this implementation was contained in the replicated process. The execution times
measured while running on 8 processors varied from less than 30 minutes to more
than 2 hours for the same program, data set, and host processor loads. The reason

for this large variation in execution time is unknown.

6.1.6 1PSC/1 Implementation #6 Only three unique processes were identi-
fied in this implementation, allowing up to 29 processors to execute the replicated
process. Approximately 92% of the computational load for this implementation
was contained in the replicated process. The improvement in performance for this
implementation over implementations #4 and #5 is the result of the trade-offs be-
tween computational load, communication, and number of processors for replicated
processes. The increase in computation in the replicated process was offset by a
reduction in communication and an increase in the number of processors available

to execute the replicated process.

6.1.7 iPSC/! Implementation #7 This implementation out performed im-

plementation #6 because communication and computation timing was taken into

6-4

account in the decomposition. This resulted in greater overlap between commu-
nication waits and computation in the node processes. As in implementation #6,
approximately 91% of the computational load for this implementation was contained

in the replicated process.

6.1.8 iPSC/2 Implementation #7 Speed up results are determined with re-
spect to the sequential version of BMDSIM executed on the iPSC/2 host processor.
The extra communications overhead on the iPSC/1 apparently accounted for ap-
proximately 9.5% percent of the execution time. This figure would be expected to
increase as the number of processors in the simulation increases due to multihop mes-
sage traffic. Since the only iPSC/2 system available has 8 nodes, it is not possible

Lo check this conjecture.

6.1.9 PSC/1 Implementation #8 This implementation was a static data
decomposition of BMDSIM. As a result of the changing load balance of BMDSIM,
this implementation will be load balanced only at the start of the simulation. As
with implementation #7, approximately 91% of the computational load for this
implementation was contained in the replicated process, whicl executed on all but
one of the available node processors. The lack of load balance explains the lower
speed up figures when compared to implementation #7, even though an additional

processor is available to execute the replicated process.

6.2 FEncore Implementation Results

Performance results for the Encore parallel implementation of BMDSIM are
summarized in Table 6.2. Speed up results were determined with respect to both
the sequential version of BMDSIM and to the parallel version executing on a single
processor. For the hypercube implementations this comparison was not performed

because changes to the number of processors used below the number of unique pro-

cesses in each implementation meant a change to the source code.

Tablc 6.2. Encore Parallel BMDSIM Results

Number | Speed up | Speed
of vs. up Efficiency | Efficiencyimi
Processors | Sequential | Limit
Sequential 1.000 — —_— —

1 0.919 1.000 0.919 0.919
2 1.449 1.817 0.725 0.797
3 2.195 2.496 0.732 0.879
4 2.364 3.070 0.732 0.879
5 2.770 3.561 0.554 0.778
6 3.219 3.987 0.537 0.807
7 3.661 4.359 0.523 0.340
8 3.292 4.687 0.412 0702
9 3.336 4,978 0.371 0.670
10 3.826 5.238 0.383 0.730
11 3.634 5.473 0.330 0.664
12 4.056 5.685 0.338 0.713
13 3.900 5.837 0.300 0.668
14 4.105 6.011 0.293 0.683
15 4.024 6.169 0.268 0.652

L 16 4.428 6.315 0.277 0.701

The Efficiencyymi; column in Table 6.2 represents the efficiency of the given
trial with respect to the estimated limit from Equation 5.3. The results in this
column follow a generally decreasing pattern, which is as expected. As the number
of processors increases, the likelihood of bus collisions and time spent waiting to enter
the critical section of code, had a greater impact on the simulation performance. T'he
speed up limit equations developed for shared memory architectures provide a more

accurate indication of potential performance than those developed for distributed

memory systems. A complete set of results is contained in Appendix C.

6.3 A Comparison of Architectures

6.3.1 Performance Figure 6.1 is a graph displaying the relative performance

of the three architectures used in this effort, for a comparable implementation (iPSC

6-6

implementation #7). The Encore Multimax provides more than 1.5 times the speed
up than either of the iPSC implementations. When overhead figures are taken into

account, as in Figure 6.2, the difference is less dramatic, but it still exists.

1 b 1 T L 1

Linear Speedup
5 iPSC/1 #7

Eucore

4
Speed up 3l 1
iPSC/2
2 +
F .
1 1 1 1 L1 -
G
0 5 10 15 20 25 30

Number of processors

Figure 6.1. Speed up Graph for Comp-rable Implementticns nn Diflerent Archi-
tectures

The difference in speed up between these architectures is determined by three
major facto s. The times included in the speed up computations change the results
obtained. Including overhead times in speed up calculations further distinguishes
the performances obtained by the architectures studied here. This also provides a
better comparison to the sequential version of the program by identifving all ex-
ecution overhead incurred in parallelizing a program. The secord factor affecting

verformance figures for these architecturesis the difference between m scage passing

6.7

iPSC/1 #7]

Speed up

Il ! L 1 1 1
0
0 5 10 15 20 25 30

Number of processors

Figure 6.2. Speed up Graph for Comparable Implementations Excluding Initializa-
tion Overhead

overhead and bus contention overhead. Figure 6.3 represents the total overhead for

each implementation in seconds.

The data used to plot Figure 6.3 are ir: absolute time (seconds), which amplifies
the differences between the processor speeds. Figure 6.4 provides a comparison of
these overhead times normalized with respect to their execution times. This graph
indicates that overhead is primarily a function of the number of processors. While
it would be tempting 1o conclude that the fraction of processing needed for over-
head is independent of architecture, the accuracy of the time measuremernts became
significant (approximately +£2% for 16 processors) for the Encore as execution time

decreased.

The final factor is the time required to load programs into the appropriate

6-8

T | T T T T

70| B

" _#3
- #2a -~ » - .

60 g . #4

-~— e -#r)

#2 \ =9,

L . 8
50 — 7]

>~ -* '#G
40 [R

Overhead
(sec)
30 []
20 []
10/ }
WEncore
A i i 1 1
0
0 5 10 15 20 25 30 35

Number of processors

Figure 6.3. Overhead Times for Implementations

processor. Figure 6.5 is a graph the average of this time for all iPSC/1 implemen-
tations, and clearly shows this time is a function of the number of unique processes.
The number of processors used does not affect this number in the iPSC systems
because it 1s possible to load all node processors with a single process. No similar
information is included for the Encore since it creates multiple processes at program

initialization.

If there were a clear winner in this effort, it would be thec shared memory

architecture. Bus and memory contention had a negligible affect on performance

6-9

T 1 1 t 1
12 #7
s #8]
10
[2 #6]
#4
#5
Overhead % 6|
Encor #3
4
a
2 i
#2
] 1 1 1 1 .
0
0 5 10 15 20 25 30 35

Number of processors

Figure 6.4. Normalized Overhead Times (% of Execution T.me)

when compared to message passing overhead on both iPSC systems. This was due
in part to the faster speeds of the “Nanobus™ when compared to the Ethernet channel

connections between nodes of the hypercube systems.

Shared memory architectures are limited in the number of processors which can
be accommodated due to the increase in memory bandwidth requirements with the
number of processors. The basic issue is what is “adequate” perf~ ce, and can
it be achieved with the number of processors available in a sharea nemory system.
Since distributed memory systems do not require the memory bandwidth of shared

memory systems, greater numbers of processors can be appiled to a given problem.
) Pl

6.3.2 Programming Fnvironment The shared memory system provided a much

nicer programming environment. Many of the headaches of process control and

6-10

35
30
L
25
20
Seconds

15

10

1 1 1 1 -l {

0 1 2 3 4 5 6
Number of Unique Processes

-]

Figure €.5. Average Time to Load Node Processors versus Number of Unique Pro-
cesses

communication were handled by the operating system, since it must handle these
problems for system processes. The parallel FORTRAN compiler removed process
creation and ccmmunication an additional distance away by providing constructs to
identify both parallel and critical sections of code. Program parallelization involved
identification of the sections of code to be parallelized, the shared and local variables
in those parallel sections of code, and any critical sections of code within the parallel
sections. Program scalability to the number of processors was handled by setting a
run time environment variable. There was uo need to map processes to processors.

Program execution was stable and predictable.

The iPSC systems, on the other hand, required creation processes, message

traffic, and ~ontrol structures to handle messages in the proper order. It was nec-

6-11

essary to understand the limitations of the message handling system and the node
processors in order to implement the simulation. Though a distributed memory
system maps to functionally decomposed systems more easily (since it is based on
the concept of separate communicating process), the iPSC systeins were prone to
inexplicable lock ups and unpredictable performance. Trials often would not execute
to completion two times in a row, and system processing lights would indicate all
nodes were waiting for communication, though BMDSIM will not deadlock unless
message traffic is lost. In addition, though BMDSIM is non-deterministic in its com-
putational load, the deviation in execution times between trials was much more than

expected for implementation #5.

6.4 Guideline Development

Figure 6.6 shows the speed up graph, including initialization time, for all the
iPSC/1 implementations. The relative performance of each implementation generally
improves as the number of processors increases. This is very much as expected,
and indicates data parallel programs possess greater potential for parallelism, than
functionally decomposed programs. The primary reason for this is that a large data
parallel simulation will generally provide a greater number of processes afier data
decomposition than after functional decomposition. A simulation with a large data
set, where each element of the set is processed using the same functions, xill be a

good candidate for data decomposition.

The purely functional decompositions of this study show the affects of this
property. Their speed up results are relatively poor, due to the dependencies and
synchronizations needed for their implementation. However, as noted at the end of
the previous chapter, the decision to keep the functions defined in the original sim-
ulation severely limited the performance of the functional decompositions. There is
no reason to believe the relative performance obtained in this research is an inherent

property of functional decompositicns. However, since data decomposition can be

6-12

5 i T L L] 1
#7
Linear Speedup
‘ad #8-
4
#6
3 - —
pe ‘#4
Speed up #5
J
o[.
#3
i r o#2a =
+#2
o#1
1 1 1 1 | il
0
0 5 10 15 20 25 30

Number of processors

Figure 6.6. Speed up Graph for iPSC/1 Implementations

developed using existing functions, they generally require less effort to parallelize

than functional decompositions.

Based on this information, parallelization guideline number one is:

Guideline One: Consider data decompositions before functional decompo-

sitions when the original simulalion has a large decomposable data struc-

ture.

Another thing to note about Figure 6.6 is the relative performances of imple-

mentation #1 with and without feedback. This is case where, since feedback reduces
the computational load. and the process receiving the feedback is computationally
bound (approximately 68% of all processing), feedback is a good thing. Therefore,

guideline number two is:

Guideline Two: Understand the effect of feedback on the computation
before eliminating feedback loops.

While not always an option, feedback loops which maintain current values of “global”
data structures may be eliminated or reduced i frequency in order to reduce simnu-

lation message traffic.

The computational load in BMDSIM is not static, and depends on the avail-
able defensive elements and on the identification of boosters which have not been
destroyed. Figure 6.7 shows the relative progress of the sequential simulation and
implementation #7 on the iPSC/I. A constant slope line on this graph indicates a

uniform computational load over simulated time.

The instantaneous speed up graph in Figure 6.8 represents the changes in

computational load for BMDSIM and its affect on program parallelization efficiency.

The measurement of “instantaneous speed up” (proposed by Wieland) graphi-
cally depicts these changes in the computational load and the improvement provided

by parallelization (41). Instantaneous speed up is defined as the ratio of derivatives

dlseq
dtac d‘e

In(g) - dt - (_g; (6'2)
n dg

where

g = measured Global Virtual Time = Simulation Time
tseq = real time for sequential simulation

t, = real time for n processors

6-14

2000 v ST 1 T 1 T

Sequential

1500 [7
Real Time
sec -
(sec) 1000]
500 []

iPSC/1 #7

] | i 1 1

0 50 100 150 200 250 300
Simulation Time (sec)

Figure 6.7. Progress of Sequential Simulation and Implementation #7 (32 nodes)
on the iPSC/1

Though originally proposed as performance metric for simulations running un-
der the “time warp™ paradigm, instantaneous speed up reveals similar information
about any paralle] simulation where a global simulation time can be defined. The
primary benefit of instantaneous speed up is as an indicator of portions of simulation

time where speed up is limited (3).

The form of this graph follows expectations. The relatively low speedup regions
at each end of the graph reflect those portions of simulated time where there are no
booster clusters within the engagement window (that is they have not reach minimum
engagement altitude, or they have burned out). The fluctuations in the central region
of the graph correspond to the changes in computational load which can be attributed

to relative availability of defensive elements at each increment of simulation time.

6-15

1 R T T T 1
[2
20|]
15 7
L 2
Speed up N _
10 1
sl 1
4 3
$0000000000
1 1 i 1 1]
0
0 50 100 150 200 250 300 350

Simulation Time (sec)

Figure 6.8. Instantaneous Speed up for one 32 node trial of Implementation #7 on
the iPSC/1

The large spike at approximately 265 simulation seconds is a result of the engagement
requirement that the engagement complete before cluster burnout. At that point in
the simulation feasible links are determined for all remaining booster clusters, but
few or no engagements meet this requirement. The variations in computational load

for BMDSIM are not only time dependent they also depend on the data partitioning.

Figure 6.9 depicts the performance difference between static and dynamic data
partitioning for BMDSIM. The result of a static data partition is that simulation load

balance worsens as simulation time increases and processors have all their boosters

6-16

destroyed. The efficiency of replicated processes is reduced by load imbalances, as
displayed in Figure 6.10. The dynamic partition data is from implementation #7,
with N-2 replicated processes, where N is the number of processors. The static

partition data is from implementation #8, with N-1 replicated processes.

5 L { V 1 1 |
Linear Speed up

4 - —

Dynamic
3l T
Speed up L_

0 4

1| i
1 1 1 L 1 1

0

0 5 10 15 20 25 30 35

Number of Processors

Figure 6.9. Dynamic versus Static Data Partitioning

A guideline appropriate for this observation is:

Guideline Three: When load balance varies with time over a partitioned
data set, dynamic allocation of dat. items to processors will improve
performance.

Note that this guideline is caveated by the ratio of replicated processes to data items
in the partitioned data set. If data were partitioned with one data item per processor

there would be no difference between static and dynamic partitioning.

6-17

.35

.25

Efficiency
.15

0.05

1 1 { 1 'l 1

0 S 10 15 20 25 30 35
Number of processors

Figure 6.10. Replicated Process Efficiency in Static and Dynamic Data Partitioning

Other guidelines, which are not so readily apparent from the results, are derived

rom observaiions made while cieating the in ' entations:

Guidelv Four: Combine messages whenever possible; the number of
messages tends to be more timportant than their size, and communication
s more erpensive than computation.

Assuming the 1PSC systems are representative of the class of distributed memory
systems, communications overhead is extremely important. Combining message re-
duces system requirements between application processes, with regard to memory

and, depending on the message passing mechanism, processing time. In addition,

6-18

since most architectures are not fully connected, the effect of message traffic on

intermediate processors must be minimized.

Gutdeline Five: Overlap communication waits with computation.

This guideline can be drawn directly from a comparison of the results for imple-
ment..tions #6 and #7 on the iPSC/1. If it is possible to predict when a process
will be waiting for communication (for example, at a clock synchronization point
in a time driven simulation), perform any computations possible for the next clock
interval. This requires independence between the computation and the message in

the pending communication.

Guideline Siz: Minimize critical sections of code.

If a critical processing task or critical -2ction of code requires a large fraction of
processing time, this process will limit the speed up possible through parallelization.
Therefore, in both distributed and shared memory systems, it 1s desirable to minimize
critical sections of code in order to reduce the time for any process to occupy the
critical section (for distributed memory systems critical code vecomes . scparate

process or a synchronization message).

Guideline Seven: Determine whether the application requires determin-
ism, and if not, what the performance trade-off is for determinism and
non-determinism.

This guideline is applicable to data decomposed systems which have a critical section
of code. If determinism is required, mechanisms must be created to ensure that

regardless of the order messages are received from replicated processes, the messages

6-19

are processed in the “proper” order. These mechanisms will usually increase the

space or processing requirements of parallelized program.

Guideline Eight: For eristing simulations, understand how the decision
to use existing code will limit parcllelization options.

This guideline addresses the “speed up limits” computed for all implementations,
and the partitioning options available when existing functions or subroutines are
used. If one of the existing subroutines requires a large fraction of total processing
time and cannot be replicated to provide data parallelism, that process is a limiting
factor in the performance of any parallel implementation. In the case of BMDSIM,
changes in the control structures and data structures combined with changes to
MIRVIS, LNKCAL, LNKORD, and ASSIGN would have provided better speedup
than changes to any single subroutine. On the other hand, the decision to redesign
existing code to make it “more paralle]” must be made with the understanding
that the effort required in producing a parallel version of the program increases in
proportion to the amount of code to be redesigned. In addition, the redesigned code

will require more testing.

Guideline Nine: A stmple model or equation for predicting performance
can tndicate the relative merit of two possible decompo. .. ns, but this is
not an absolute indicalor of performance.

The speed up limit model used in this effort provides only a rough estimate
of potential performance. Such a model can be used to compare the relative merits
of competing decompositions before the effort is expended in implementing them
Though it may be inaccurate in predicting the performance of any specific implemen-
tation, a model which provides results proportional to artual performance would be

invaluable. No evidence exists to support any claims ax to the speed up limit model’s

6-20

proportionality to actual performance. The accuracy of the speed up limit model
is depicted in Figure 6.11 for the Encore implementation. Figure 6.12 shows the

relative accuracy of the speed up limit model for the best iPSC/1 implementation.

7 | T T 1 T 1 ¥ T
6 o -
> Actual
4 p— -
Speed up
3
o -
o -
1 1 1 —_ A 1 i £
0
0 2 4 6 8 10 12 14 16

Number of processors

Figure 6.11. Actual Speed up versus “Speed up Limit” for the I'icore

Finally, based on the architecture comparison of the previous section:

Guideline Ten: If program scalability to a large number of processors s
nol required, use a shared memory architecture.

Shared memory architectures will provide an easier environment in which to work.
They will also have less overhead. However, current technology limits the number
of processors in shared memory architectures to orders of magnitude less than dis-

tributed memory systems. Though not a major factor in this effort, some simulations

6-21

8 1 T 1 il H L

7 - -
- —

6

5 - Actual ~

Speed up 4

3 - -
2 - -
1| 7
1 1 1 1 1 1
0
0 5 10 15 20 25 30

Number of processors

Figure 6.12. Actual Speed up versus “Speed up Limit” for iPSC/1 Implementa-
tion #7

are more logically suited to a message passing, distributed memory architecture with
a large number of processors. The primary problem in these cases is finding a decom-
position which balances the communication and computational requirements of the
simulation. The large computational load in BMDSIM was sufficient to overwhelm

the communication requircments during performance testing.

6-22

VII. Conclusions and Recommendations

7.1 Conclusions

Parallel processing offers the potential of increased program execution speed by
distributing program computation across multiple processors. Though this aspect of
parallel programming is widely accepted, there is no such agreement on the method
or approach to take in distributing a program. When parallelizing an existing sim-
ulation program, additional issues must be addressed with respect to the amount of

effort to be expended in the parallelization process.

This objective of this thesis effort was to develop a set of guidelines for par-
allelizing existing time driven :'mulations. The general approach was to use an
existing time driven simulation to investigate the issues and options associated with
program parallelization, and to use the empirical results from this investigation to
develop the guidelines. The developed guidelines are a reflection of the simulation
used to develop them and, until they have been validated by applying them to other
simulations, they represent an analysis of the results obtained. The guidelines are

contained in Appendix A.

The major accomplishments of this effort can be defined as follows:

e This effort provided the first documented “head-to-head™ comparison of dis-
tributed memory architectures and shared memory architectures for a single
application. The shared memory architecture used, though limited in the po-
tential number of processors by memory bus bandwidth, provided a much
better programming environment and less total system overhead. The results
presented in Chapter 6 clearly demonstrate the advantages of shared memory

architectures for comparable numbers of processors.

e Program decomposition is one of the major decisions to be made in program

parallehization. The results of the various implementations for distributed

7-1

memory architectures demonstrated the advantages and disadvantages of data
decomposed systems and functionally decomnosed systems. The decomposi-
tion selected will determine the performance of the simulation, especially for a
computationally intensive simulation. Though discrete event simulations were
not investigated in this effort, this results should be equally applicable to dis-
crete event simulations where each process acts on a similar data structure (the

“colliding pucks” problem for example (4)).

For distributed imemory architectures, the method of dealing with “shared”
memory structnrac in tha seauential simulation can drasiicaiiy aiiect ilie vver-
all performance of the parallelized simulation. The “feedback™ loops in the
BMD simulation implemented shared data structures from the sequential sim-
ulation on the distributed memory architecture. The frequency of this feedback
will influence not only program performance, but also program determinism,
depending on the manner in which the shared structures are used (program

control vs program computations)

Program determinism becomes a major issue with parallel programs. A sequen-
tial program often derives much of its deterministic behavior from the control
of the program instruction pointer. Sequential programmers often rely on this
mechanism implicitly to provide deterministic behavior. When a program is
parallelized this implicit control is absent, and it is up to the programmer to
either accept the non-deterministic behavior of the parallelized program or to
provide addition. ..cchanisms to ensure deterministic execution. Determin-
ism comes at the c. >f memory space, additional computation, or both; but

non-determinism introduces problems in program testing and accuracy.

The entire parallelization process is a sequence of trade offs between perfor-
mance and effort. Probably the largest single factor involved in this decision is
the question of how much sequential code to use in the parallelized program.

The decision to use existing code determines the control and data structures

needed in the parallel program, limits the number of potential decompositions,
and to a large extent will determine the maximum speed up any parallelized

program will achieve.

The analysis involved in program parallelization can lead to the identification
of deficiencies in the sequential program. If maximum program performance had
been the goal of this thesis, much of the original source code would have been re-
designed. Using original subroutines determined messages and control structures
required in the parallel implementations, and reduced the options for parallelization

and potential speed up.

7.2 Recommendations

There are many possible areas for continued study in the field of program
paralleiization. The following recommendations address some of the issues raised

but not addressed in this thesis.

o Global memory structures in the sequential BMD simulation were maintained
using feedback messages in the distributed memory system. Is there an efficient
way to handle global memory structures in a distributed memory architecture?
Sequential programs using global memor, 1 ‘ructs for control or computa-
tion must have a means of maintaining the. constructs when parallelized.
What is the performance trade off? Can these structures be identified and
localized to a particular process? What methods can be used to restructure
a sequential program during parallelization to minimize the impact of such

global structures?

e The speed up limit model presented in Chapter 5 provides only a very gross
estimate of the relative performance of two parallel decompositions. A com-

putational model which can be used to predict the relative performance of a

parallel program would be invaluable in reducing the effort involved in produc-

ing a “good” parallel decomposition of a program.

The relative merits of static vs dynamic load balance were only partially men-
tioned in the results of Chapter 6. There is some conjecture that program load
balance is determined by the process executing on a processor rather than the
data that process is acting upon. Is dynamic data allocation a feasible solu-
uon in the cases where piocesses are replicated? If the process executing on a
processor determines the load balance, what are the options for process migra-
tion, dynamic process creation and deletion, and other mettnds of reallocating

processes to processors? What :nethods can be used to detect load imbaiane.?

One of the major activities in parallelizing BMDSIM was analyzing the sequen-
tial simulation to determine what decompositions were feasible and which ones
were likelv to provide a performance improvement. The limitations of paral-
lelizing compilers in recognizing program parallelism were briefly discussed in
Chapter 2. Currently no automated tools exist to aid in identifying potential
parallelism in sequential programs. A semantic analyzer capable of recogniz-
ing parallel constructs in general is probably not possible. However, a tcol
which could help this process would be an interactive parser for identifying
variable usage anc scope. For example, in BMDSIM all data structures in the
FORTRAN “COMI1TON" blocks were manually identified for size and use in
calls to subroutines and procedures. A tool which could parse the source code
and determine the procedures requiring visibility to data structures would have

helped to reduce the work load.

The guidelines developed in this effort were based on results for a compu-
tationally bound time driven simulation. How applicable are the results to
communication intensive or discrete event simulations (such as digital circuit

simulation)?

7-4

e Program determinism is a major issue in parallel programming. Is there a
way to quantify the cost of guaranteeing deterministic performance in a par-
allel program? What are the affects of determinism or its lack on simulation
performance? 15 there any rule for when deterministic behavior is required or

desirable in program execution?

7.3 Summary

This research concentrated on the parallelization of time-driven simulation.
While many questions remain in this field of study, the results presented here pro-
vide a baseline for the considerations and concerns to be taken into account when
parallelizing a simulation. It is hoped that many of these issues and concerns can be
generalized from the framework of the BMD simulation to the area of time-driven

simulation and parzllcl simulation in general.

The largest factor to consider when parallelizing an existing simulation is to
what extent existing code will be used. The decision to use existing code as a
baseline for a parallel program will have an explicit impact on the parallel design
when existing code is used in the parallel program. However, even if none of the
original code is used, existing code used as a reference while designing a paralle]

simulation will influence many of the design decisions, even if only by example.

The guidelines developed in this research do not provide step-by-step instruc-
tions for parallelizing sequential simulations. The requirements and objectives of
each simulation and the goal of the parallelization can vary so much between in-
dividual simulations that such specific instructions are not possible. Instead, these
guidelines provide the programmer with issues to be considered and ideas on direc-

tions to take in parallelizing simulations.

7-5

Appendix A. Guidelines for Simulation Parallelization

A.1 General Concerns

Decisions must be made about the level of effort to be expended in parallelizing
an existing simulation. There are many issues which will determine what level of
effort is required while parallelizing the simulation. These issues are not independeut
and the decision made for one issue may affect the decisions made for several others.

Of these issues, the following are among the most important:

e What is the purpose of the parallelization? If the goal of the parallelization
1s “maximum chtainable speed up”, the decomposition decisions will probably
differ from goals of “larger model size” or “moderate speed up and moderate

effort™.

e What is the expected performance improvement, and is it worth the level of

effort?

e What architecture is best or is available for parallelization? The architecture
used will influence the performance and level of effort of the parallelization.

However, there is no choice involved wher there is only one architecture avail-

able.

o Will the program be functionally decomposed, data decomposed, or will a
combination of the two be more appropriate? Replicated independent data
structures (such as array elements) must be present in the simulation if a
data decomposition is desired. Functional decompositions arc more likely to
produce satisfactory results when independent operations are performed to

obtain simulation results.

e Are there any critical sections of code? Shared memory structures introduce

complexity into any decomposition. Ideally these structures would be limited

A-1

to one logical process, but this may not be possible in a data decomposed

system. The method used to implement a critical section of code will affect

the performance of a parallelized simulation.

Is deterministic output required or desirable? Deterministic operation is guar-
anteed in sequential simulation. Parallel implementations of this same simu-
lation may be non-deterministic depending on the algorithms and data struc-
tures used. If determinism is required the programmer must implement some

mechanism to ensure deterministic operation.

Does the program exhibit heavy computational loads or are computations sim-
ple? If computational loads are heavy in simulation processes communication
overhead for distributed memory architectures will have less total impact on
parailel simulation performance. Conversely, if computations are simple it may
be advisable to combine logical processes onto single processors to reduce the

impact of communication overhead.

What general pattern of information or control flow does the program exhibit?
A simulation with nested loops within the simulation time loop wiii complicate
the parallelization process. If nested loops exist, it may be necessary to redesign
tital portion of the suNuiation Gi to comdine the functions within ihe nested
loops into larger logical processes.

How much existing code will be used? This is one of the most important

decisions to be made. Tms decision will impac, Both the cverl) serformance
t r

of the paralle] simulation and the level of effort required to parallelize t..:

sequential program.

Is the problem uniform in computation, or does computation vary with respect
to simulation time? Wide variations in computational load between parallel
processes will limit the speed up of the parallel simulation. If these variations

can be predicted or detected, some load balancing technique may be employed

A-2

to redistributed the computational load. and improve performance. The deci-
sion to include load balancing in the simulation will increase the overhead of

the parallel simulation. but may improve overall performance.

Is the sequential simulation “good™, and if not. will any cffort bhe made to

improve simuiation algorithms during parallehization?

The Guidelines

The guidelines developed during this research are related to the issues raised

in the previous section. They are not a set of step-by-step procednres for program

parallelization. Instead. they are designed to spur thought on parallelization issues

and to provide ideas on directions to take and methods to use in producing a “good”

parallelization. General guidelines:

Guideline One: Consider data decomposttions be fore functional decompostirons

when the original simulation has a large decomposabie data structure.

Guideline Two: Understand the cffect of feedback on the computation be fore

eliminating feedback loops

Guideline Three: When load balance varies with time over a partitioned data

set, dynamic allocation of data items to processors will tmprove performance.

Gutdeline Four: Combine messages whenever possible, the number of messages
tends to be more itmportant than their size, and communication 1s more erpen-

stve than computation.
Guideline Five: Overlap communication waits with computation.
Gutdeline Siz: Minimize critical sections of code.

Guideline Seven: Determine whether the application requires determinism, and

if not, what the performance trade-off is for determinism and non-determinism.

A-3

e uideline Eight: For eristing stimulations, understand how the decision to use

existing code will limit parallelizotion options.

¢ Guideline Nine: A simple model or equation for predicting performance can
indicate the relative merit of two possible decompositions, hut this 15 not an

absolute indicator of performance.

o Guidchine Ten: If program scalabiiity to a large number of processors is not

required, use a shared memory architecture.

Basicallyv the parallelization process is a trade off between the amouni of work
and time to be spent on a project and the speed up required or desired. While
performance limits will exist, the decision as to what limits are or are not importent

will determine what metrics are used to call an implementation successful or a failure.

Appendix B. BMD Simulation Data Structurcs

Table B.1. BMD Simulation data descriptions and sizes

COMMON BLOCK STRUCTURES

Name Size (bytes) | Description |

ITYPEA 400 | vector (100), of booster cluster type used by BOSTI I—‘
and TRAJ |

NBPC 400 | vector {100). number of boosters for each cluster used 16
init NBPCR running tally, and in equation to determine
fraction of leakers !

TBL 800 | vector (100), time before launch for each cluster {test
data=0) used to determine vulnerability window for clus-
ter

SEPAV 800 | vector (100), average booster separation per cluster used |
in LNKCAL

XLATL 800 | vector (100), launch latitude of cluster used in BOSTIT

XLONL 800 | vector (100), launch longitude of cluster used in BOSTIT |

XLATT 800 | vector (100), target latitude of cluster used in BOSTIT

XLONT 800 | vector (100), launch lengitude of cluster used in BOSTIT

BGAM 800 | vector (100), RV reentry flight path angle, used in BOS.
TIT (ORBEL)

V] 2400 | array (3,100), initial velocity vector from cluster Jaunch |
returned from BOSTIT and used in TRAJ

RL 2400 | array (3,100), position vector of booster launch complex !
returned from BOSTIT and used in BMDSIM driver |

RBO 2400 | array (3,100), position vector of booster at burnout re- |
turned from BOSTIT and used in TRA !

VBO 2400 | array (3,100), velocity vector of booster at burnout re- i
turned from BOSTIT and used in TRAJ |

TBO 2400 | vector (100), time of booster cluster burnout returned
from BOSTIT and used BMDSIM driver and TRA

RT 2400 | array (3,100), position vector of target complex returned |
from BOSTIT and used in main

TFBOT 800 | vector (100), time of flight from burnout to impact re-
turned from LOSTIT and used in BMDSIM driver and
TRAJ .

B-1

Table B.2. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)

Name Size (bytes) | Description

AR 4800 | array (3,3,100), transformation matrix to convert from
coordinate systemn with X-axis along RL vector to one
with X-axis in direction of Greenwich meridian at time
of launch, returned from BOSTIT and used in TRAJ

AR 4200 | array (3,3.100), transformation matrix to convert from
coordinate system with X-axis along RL vector to one
with X-axis in direction of Greenwich meridian at time
of launch, returned from BOSTIT and used in TRA

RBERT 2400 | array (3,100), a second positional vector for each cluster
used by plotmis, with an inverted coordinate for image
perspective

TIP 800 | vector (100), time of impact used by graphics routine
plotmis

RB 2400 | array (3,100), position vector of booster cluster at time
T returned from TRAJ and used in BMDSIM driver,
RRBVIS, and LNKCAL (MIRGEO (VADD))

VB 2400 | array (?,100), velocity vector of booster cluster at time T
returned from TRAJ and used in RRBVIS, and LNKCAL
(MIRGEO (VADD))

ALT 800 | vector (100), altitude of booster cluster at time T

RANGE 800 | vector (100), cluster range from launch

XLATP 200 | vector (25), laser installation latitude us-d in POSVEC

XLONP 200 | vector (25), laser installation longitude used in POSVEC

RP 600 | array (3,25), laser position vector returned by POSVEC
and used in RRPVIS (VMAG, VADD, and DOT) and
LNKCAL (MIRGEO (VADD))

RSBM 8 | radius of mirror orbit from surface of earth used in BMD-
SIM driver to set up value for SBMIT and sBMPQOS

NSBMPO 4 | number of space based mirrors per orbit used in SBMIT,
SMBPOS, RRPVIS, RRBVIS, MIRVIS, and BMDSIM
driver

NSBMO 4 | number of space based mirror orbits used in SBMIT

SMBPOS, RRPVIS, RRBVIS, MIRVIS, and BMDSIM

driver

Table B.3. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)

Name Size (bytes) | Description

DELETA 8 | true anomaly offset between the Kth mirrors in adjacent
orbits, used in SBMIT

XINC 8 | inclination of the mirror orbits to equatorial plane used
in SMBPOS (SBMLOC)

RAO 80 | vector (10), initial right ascension of the Jth mirror orbit

returned by SBMIT and used in SBMPOS

ETAO 1600 | array (10,20), initial true anomaly of the Kth mirror in
the Jth orbit (J,K), returned by SBMIT and used in
SMBPOS

RA 80 { vector (10), right ascension of the Jth mirror orbit at
time time T, returned from SBMPOQOS

ETA 1600 | array (10,20),true anomaly of the Kth mirror in the Jth
orbit (J,K), returned by SBMPOS

R 4800 | array (3,10,20), position vector for each orbiting mirrer |

at time T, returned from SBMPOS and used in RRPVIS.
RRBVIS, MIRVIS, and LNKCAL

RRBM 1600 | array (10,20), range between booster cluster and the Kth
mirror in the Jth orbit (J,K), returned from RRBVIS and
used in MIRVIS and LNKCAL

R.ANG 1600 | array (10,20), incident angle of laser on booster froin Kth
mirror in the Jth orbit (J,K), returned from RRBVIS and
used in MIRVIS

RRPM 48000 | array (10,20,30), range between Lth laser and the Kth
mirror in the Jth orbit (J,K,L), returned from RRPVIS
and used by MIRVIS

RPANG 48000 | array (10,20,30), zenith angle between local vertical at
the Lth laser and the Kth mirror in the Jth orbit (J,K,L),
returned from RRPVIS and used by LNKCAL

B-3

Table B.4. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)

Name

Size (bytes)

Description

MIRR

420

array (3,35), relay mirror data for the Ith geometrically
feasible set of laser links, N = 1, orbit index J; N = 2,
Mirror index K; N = 3, number battle mirror links for
this relay mirror; (N,I), returned from MIRVIS and used
by LNKCAL and LNKCK

MIRF

9800

array (2,35,35), battle mirror data for the Ith geometri-
cally feasible set of laser links, K = 1, orbit index J; K =
2, Mirror index K; (K,ILM), returned from MIRVIS and
used by LNKCAL (LNKCK)

IASGN

12000

array (4,25,30), an array containing the best mirror as-
signments for the Lth laser (I,J,L), returned by LNKCAL
(DASET) and used by LNKORD

DWELLT

24000

array (4,25,30),an array containing the best dwell times
including slewing and tracking, assignments for the
Lth laser (1,J,L), returned by LNKCAL (DASET and
MAXA) and used by LNKORD

LIASGN

1000

array (5,50), an array containing the best mirror assign-
ments , returned by LNKORD and used by ASSIGN (SE-
LECL)

DWELLA

1600

array (4,50),an array containing the best mirror dwell
times, returned by LNKORD and used by ASSIGN (SE-
LECL)

NBPCR

400

vector (100), number of remaining boosters per cluster,
returned by ASSIGN and used by BMDSIM driver and
LNKCAL

LMIRS

800

array (10,20), used by ASSIGN to count the number of
boosters the Kth mirror in the Jth orbit is used against

LLAS

120

vector (30), used by ASSIGN to count the number of
boosters each laser is used against

B-4

Table B.5. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)

Name

Size (bytes)

Description

TMIRS

3200

array (10,20,2), returned by ASSIGN (SELECL), and
used by BMDSIM driver, RRBVIS, RRPVIS, and
LNKCAL to keep track of total time of mirror usage and
next available time for assignment

TLAS

480

array (30,2), returned by ASSIGN (SELECL) and used
by BMDSIM driver to keep track of total time of laser
usage and next available time for assignment

IENG

800

array (10,20), the booster cluster last assigned the Kth
mirror in the Jth orbit (J,K), returned by ASSIGN and
used by RRBVIS and LNKCAL

RBENG

4800

array (3,10,20), position vector of booster cluster last as-
signed to the Kth mirror in the Jth orbit (V,J.K), re-
turned by ASSIGN and used by RRBVIS (VADD, DOT,
and VMAG)

SLANG

1600

array (10,20),slew angle between the present booster clus-
ter and the previous booster cluster assigned for the Kth
mirror in the Jth orbit (J,K), retuned by RRBVIS and
used in LNKCAL

B-5

Table B.6. BMD Simulation data descriptions and sizes (Continued)

NOT DEFINED IN COMMON BLOCK

Name Size (bytes) | Description

SiGJR 24 | vector (3), jitter for relay mirror I in micro-radians, used
by LNKCAL (RELAY)

DALASM 2400 | array (4,3,25), an array of intermediate results returned
by LNKCAL (DASET) which are equivalent to DALAS
not used

JDTIME 12 | vector (3), used on the SUN workstation to display wall
time

iztab 36 | vector (9), used to display weapon assignment data on
the SUN, returned by ASSIGN used by ZAP graphics
routine

ORATE 8 | orbital angular rate of mirrors in RAD/sec, returred by

SBMIT and used in SBMPOS

Table B.7. BMD Simulation data descriptions and sizes (Continued)

CONSTANT DATA

Name Size (bytes) | Description

PI 8 | 3.1415926536D0

RAD 8 | 57.295779513D0 - used for coordinate conversions

RE 8 { 6378.16D0 - radius of the earth in Km

NMLS 4 | 50 - “maximum” number of lasers

NMIRL 4 | 5 - number of “best links to order in LNKORD and
LNKCAL

IBMOP 4 |1 - ASSIGN battle mgmt option, assign all boosters in
cluster

10PT 4 | 0 - RRBVIS and MIRVIS laser link filter option

= 0, no filter

= 1, do not consider links that have laser incident an-
gles at the target less than “ANGMIN" (does not effect
MIRVIS)

= 2, same as iopt=1 plus selects the best “LMAX" links
for further consideration based on minimizing the range
squared divided by the sine of the incident angle (does
not effect RRBVIS)

B-7

Appendix C. Implementation Results

This appendix contains tables summarizing the performance of the BMDSIM

implementations.

Table C.1. iPSC/1 Implementation #1 Estimated Results

Number Average Speed up
of Execution Standard vS. Efficiency
Processors | Time (sec) | Deviation | Sequential
Execution times including initialization
Sequential 2013.25 30.752 1.000 —
8 approx. 9000 N/A approx. 0.2 0.025

Table C.2. iPSC/1 Implementation #2 Results

Number Average Speed up
of Execution | Standard vs. Efficiency
Processors Time (sec) | Deviation | Sequential
Execution times including initialization
Sequential 2013.25 30.752 1.000 —_—
4 w/o feedback 3736.25 1.090 0.532 0.133
4 with feedback | 2038.00 26.561 0.988 0.247
Typical Execution times without initialization
Sequential 1962.48 No data 1.000 —
4 w/o feedback | 3696.64 No data 0.531 0.133
4 with feedback | 1923.58 No data 1.020 0.255

C-1

Table C.3. iPSC/1 Implementation #2 Overhead Time (seconds)

Time to | Comm Time | Wait time | Total time

Program Load to Send till Nodes | I/O & Init

Version Nodes Init Data Ready Overhead
| Sequential N/A N/A N/A 31.44
No feedback 26.02 7.64 25.64 56.88
With feedback | 26.18 '5.96 23.86 58.28

Table C.4. iPSC/1 Implementation #3 Results

Number Average Speed up
of Execution | Standard vs. Efficiency
Processors | Time (sec) | Deviation | Sequential
Execution times including initialization
Sequential | 2013.25 30.752 1.000 —
32 1297.50 18.621 352 5.043
16 1050.00 12.903 1.916 0.120
3 2179.2% 16.300 0.924 0.116
Typical Execution times without initialization
Sequential 1962.48 No data 1.000
32 1236.10 No data 1.588 0.050
16 989.04 No data 1.984 0.124
8 2119.33 No data 0.926 0.116

Table C.5. iPSC/1 Implementation #3 Overhead Time (seconds)

Number | Time to | Comm Time | Wait time | Total time
of Load to Send till Nodes | I/O & Init
Processors | Nodes Init Data Ready Overhead
Sequential | N/A N/A N/A 31.44
32 32.32 6.14 22.60 61.40
16 32.50 4.82 22.22 60.96
8 31.74 4.16 21.52 59.92

C-2

Table C.6. iPSC/1 Implementation #4 Results

Number Average Speed up
of Execution | Standard vs. Efficiency
Processors | Time (sec) | Deviation | Sequential
Execution times including initialization
Sequential | 2013.25 30.752 1.000 —
32 761.50 13.611 2.644 0.083
16 753.00 12.903 2.674 0.167
8 1097.75 2.681 1.834 0.229
Typical Execution times without initialization
| Sequential | 1962.48 Nodata | 1.000 | —
32 677.90 No data 2.895 0.090
16 681.30 No data 2.880 0.180
8 1025.50 No data 1.914 0.239

Table C.7. iPSC/1 Implementation #4 Overhead Time (seconds)

Number | Time to | Comm Time | Wait time | Total time
of Load to Send till Nodes | I/O & Init
Processors | Nodes Init Data Ready Overhead
Sequential | N/A N/A N/A 31.44
32 26.68 4.20 22.42 56.92
16 26.68 4.92 23.58 56.68
8 25.88 4.22 24.24 55.80

C-3

Table C.8. iPSC/1 Implementation #5 Results

Number Average Speed up

of Execution | Standard vS. Efficiency

Processors | Time (sec) | Deviation | Sequential

Execution times including initialization

Sequential | 2013.25 30.752 1.000 —
32 799.00 59.068 2.520 0.079
16 1056.25 115.342 1.906 0.119
8 3975.75 2478.692 0.506 0.063

Typical Execution times without initialization

Sequential 1962.48 No data 1.000 —
32 746.12 No data 2.630 0.082
16 1037.80 No data 1.891 0.118
8 2379.78 No data 0.825 0.103

Table C.9. iPSC/1 Implementation #5 Overhead Time (seconds)

Number | Time to | Comm Time | Wait time | Total time
of Load to Send till Nodes | I/O & Init
Processors | Nodes Init Data Ready Overhead
Sequential | N/A N/A N/A 31.44
32 25.58 6.24 22.46 55.74
16 25.54 4.84 23.66 55.50
8 40.48 4.22 24.26 71.20

Table C.10. iPSC/1 Implementation #6 Results

Number Average Speed up
of Execution | Standard vs. Efficiency
Processors | Time (sec) | Deviation | Sequential
Execution times including initialization

Sequential | 2013.25 30.752 1.000 —
32 587.00 7.280 3.430 0.107
16 645.75 29.482 3.118 0.195
8 1097.50 15.898 1.834 0.229

Typical Execution times without initialization
Sequential 1962.48 No data 1.000 —
32 529.44 No data 3.707 0.116

16 595.46 No data 3.290 0.206 |
g 1104.68 No data L7771 | 0.222

Table C.11. iPSC/1 Implementation #6 Overhead Time (seconds)

Number | Time to | Comm Time | Wait time | Total time
of Load to Send till Nodes | I/O & Init
Processors | Nodes Init Data Ready Overhead
Sequential | N/A N/A N/A 31.44
32 17.64 114 15.34 45.88
16 17.10 7.00 19.68 45.24
8 16.22 4.80 21.88 44.36

C-5

Table C.12. iPSC/1 Implementation #7 Results

Number Average Speed up

of Execution | Standard vs. Efficiency

Processors | Time (sec) | Deviation | Sequential

Execution times including initialization

Sequential | 2013.25 30.752 1.000 - -
32 444.50 3.041 4.529 0.142
16 587.25 27.234 3.428 0.214
8 1142.75 31.901 1.762 0.220

Typical Execution times without initialization

Sequential 1962.48 No data 1.000 —
32 396.55 6.909 4.949 0.155
16 587.25 27.234 3.342 0.204
R 1142.75 31.901 1.717 0.215

Table C.13. 1PSC/1 Implementation #7 Overhead Time (seconds)

[Number | Time to [Comm Time | Wait time | Total time
of Load to Send till Nodes | I/O & Init
Processors | Nodes Init Data Ready Cverhead
Sequential | N/A N/A N/A 31 44
32 20.48 11.92 18.10 52.16
16 20.32 7.34 21.50 50.62
8 19.80 4.26 24.66 49.72

Table C.14. iPSC/2 Implementation #7 Results

Number Average Speed up
of Execution | Standard vs. Efficiency
Processors | Time (sec) | Deviation | Sequential
Execution times including initialization
Sequential 279.25 0.829 1.000 - -
8 144.75 4.815 1.929 0.211

Typical Execution times without initialization unavailable

C-6

Table C.15. iPSC/1 Implementation #8 Results

Number Average Speed up

of Execution | Standard vs. Efficiency

Processors | Time (sec) | Deviation | Sequential

B Execution times including initialization

Sequential 2013.25 30.752 1.000 —-
32 495.75 10.353 4.061 0.127
16 658.50 27.262 3.057 0.191]
B 1232.50 12.894 1.633 0.2641

Typical Execution times without initialization

Sequential 1962 .48 No data 1.000 -
32 435.92 No data 4.502 0.111
16 611.96 No data 3.207 0.200
R 1160.16 No data 1.692 0.212

Table C.16. 1PSC/1 Implementation #8 Overhead Time (seconds)

Number

' Time to

Comm Time

I Wait time |

Total time |

of Load to Send till Nodes | I/O & Init '

Processors | Nodes Init Data Ready Overhead |
| Sequential N/A N/A N/A 314

32 16.98 16.65 16.74 5270

16 19.36 TRR 2214 | 506 |

8 1826 7.36 24.42 52.52 |

Table C.17. Encore Parallel BMDSIM Results

Number Average Speed up | Speed up
of Execution | Standard | vs. 1 Proc vs.
Processors | Time (sec) | Deviation | Parallel | Sequential
Sequential 253.50 1.118 — 1.000

1 275.75 0.433 1.000 0.919
2 175.00 21.90 1.576 1.419
3 115.50 9.014 2.387 2.195
4 107.25 6.220 2.571 2.364
) 91.50 6.874 3.014 2.770
6 7875 4.603 3.502 3.219
T 69.25 4.023 3.982 3.661
8 77.00 2.315 3.581 3.292
9 76.00 2.550 3.628 3.336
10 66.25 2.947 4.162 3.826
11 €9.75 5.262 3.953 3.6341
12 62.50 2.291 4.412 4.006
13 65.00 2.915 4.242 3.900
14 61.75 B.526 4.466 4105
15 63.00 2.739 4.377 4.024
16 57.25 2861 4817 | 440

.8

Table C.18. Encore Parallel BMDSIM Efficiency

Processors | Efficieucy | Efficiencyimi:
1 0.919 0.919
2 0.725 0.797
3 0.732 0.879
4 0.591 0.770
5 0.554 0.778
6 0.537 0.807
7 0.523 0.840
8 0.412 0.702
9 0.371 0.670
10 0.383 0.730
11 0.330 0.664
12 0.338 0.713
13 0.300 0.668
14 0.293 0.683
15 0.268 0.652
16 0.277 0.701

C-9

Table C.19. Encore Parallel BMDSIM Overhead Times

Number Typical | Simulation Total

of Simulation Loop Overhead

Processors | Loop Time | Speed up Time

Sequential 246 — 7
1 263 0.935 7
2 143 1.720 4
3 104 2.365 3
4 120 2.050 3
5 106 2.321 2
6 T4 3.324 2
7 69 3.565 3
8 77 3.195 3
9 77 3.195 3
10 73 3.370 3
11 63 3.905 4
12 57 4.316 2
13 56 4.393 3
14 50 4.920 4
15 59 4169 3
16 49 5.020 3

C-10

Appendix D. Program Pseudocode

D.1 iPSC/1 Implementation #1

D.1.1 Host Program

Declare local variables and message types
Load node 0 program (assignment node - ASSIGN)
Load node 1 program (link ordering node - LNKORD)
Load node 2 program (mirror position node - SBMIT and SBMPOS)
Load node 3 program (booster-mirror visibility node - RRBVIS)
Load node 4 program (booster position node - BOSTIT and TRAJ)
Load node 5 program (feasible link node - LNKCAL)
Load node 6 program (laser-mirror visibility node - RRPVIS)
Load node 7 program (mirror-mirror visibility node - MIRVIS)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to nodes 0, 3, 4, and 5
Loop over number of clusters
Read cluster information (type, # boosters in cluster, time before launch,
average separation between boosters, launch latitude, launch longitude,
target latitude, target longitude, reentry flight path angle)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target positions, and reentry angle
to node 4

Send average separation and number of boosters per cluster to

D-1

nodes 3 and 5
Send time before launch and number of boosters per cluster to node 0

Read mirror information (Orbital distance from Earth’s surface,

number of mirrors per orbit, number of mirror orbits,

true anomaly between mirrors in adjacent orbits, inclination

of mirror orbits to equatorial plane, mirror angular slew acceleration,

time to stablize mirrors and track booster)

Swap byte order if Sun workstation host

Send all mirror information to nodes 2, 3, and 5

Send number of orbits and mirrors per orbit to nodes 0, 1, 6, and 7
Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0, 1, 5, 6, and 7
Loop over number of lasers

Read laser latitude and longitude
end loop
Read laser parameters (laser power output, beam quality, laser wavelength,

laser projector aperture, atmospheric divergence factor,

laser jitter, semi-major axis of relay mirror, semi-minor axis of

relay mirror, jitter for relay mirror 1, jitter for relay mirror2,

mean critical fluence required to kill the booster, standard

deviation of critical fluence, number of standard deviations

to be used in determining fluence and dwell time)

Swap byte order if Sun workstation host

Send laser parameters to nodes 5 and 6
Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

D-2

Send increment, max time and flag to all nodes
START SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plot if on Sun
LENGMSGI! - received number of boosters remaining in each
cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.1.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster
Receive number of mirrors per orbit, and number of mirror orbits
loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

D-3

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If not END OF TIME INTERVAL then

Receive potential assignment information
Call ASSIGN to determine which of the potential assignments
can be made based on laser and mirror utilization data,
if weapon assignment made then
update laser and mirror utilization arrays and nunber of boosters
remaining in cluster

Send assignment to HOST

end if
else
Receive message for end of simulation interval
Send updated utilization information and number of remaining boosters
per cluster to nodes 3, 5, 6, 7, and the host
Increment simulation time
end if

END SIMULATION LOOP

D.1.8 Node | - LNKORD

Declare local variables and message types

Open communication channels

D-4

Receive number of mirrors per orbit, and number of mirror orbits
Receive number of lasers
Receive simulation time information
START SIMULATION LOOP
If not END OF TIME INTERVAL then
Receive unsorted link information (3 messages)
Call LNKORD to sort links by time to complete engagement
Send “NMLIK” potential assignments to node 0- ASSIGN
else
Receive message for end of simulation interval
Increment simulation time
end if
END SIMULATION LOOP

D.1.4 Node 2 - SBMIT and SBMPOS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP
Call SBMPOS to determine mirror positions for time interval
If not first time interval then wait for END OF TIME INTERVAL message
Send mirror positions to nodes 3, 5, 6, 7, and HOST
Increment simulation time

END SIMULATION LOOP

D-5

D.1.5 Node 8 - RRBVIS

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive simulation time information and defenses flag
Receive time of cluster burnout
START SIMULATION LOCP
Receive mirror positions for this time interval
Receive cluster positions for this time interval
If defenses on then
LOOP over booster clusters
if boosters remain in cluster, before burn out, and
above minimum altitude then
Call RRBVIS
Send RRBM, RIANG, and SLANG to nodes 5 and 7
Receive reply from node 7 that ready for next cluster
end loop
end if
Send END OF TIME INTERVAL message to nodes 0, 1, 2, and 4

D-6

Receive updated utilization information and number of remaining boosters
per cluster from node 0
Increment simulation time

END SIMULATION LOOP

D.1.6 Node 4 - BOSTIT and TRAJ

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
initialize booster clusters determining position and
velocity vectors at launch, time of burnout, time
from burnout to impact, and coordinate conversion matrix
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
LOOP over number of clusters
Determine cluster position and velocity vectors for this time interval
end ldémot first time interval then wait for END OF TIME INTERVAL message
Send cluster position and velocity vectors to nodes 0, 3, 5, and the host

Increment simulation time

END SIMULATION LOOP

D.1.7 Node 5 - LNNCAL

S —

Declare local variapies and inessage types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
mirrors and track booster
Receive number of lasers
Receive laser parameters
Receive simulation time information and defenses flag
START SIMULATION LOOP
Receive mirror positicns for this time interval
Receive cluster positions for this time interval
Receive laser-mirror angle messages from node 6 (3 messages)
if updated utilization and number of remaining boosters message has
not been received
Receive booster mirror ranges, beam incident angle, and
mirror slew angle from node 3
LOOP while receiving laser-mirror-cluster data for
current cluster from node 7
Receive laser-mirror-cluster data
Call LNKCAL
end loop
if any lasers are available
Send index into cluster data structures, and unsorted
link information to node 1
end if
end if

D-8

Receive undated utili.ation information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.1.8 Node 6 - RRPVIS

Declare local variables and message types
Open communication channels
Receive number of mirrors per orbit, and number of mirror orbits
LOGP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
Receive laser parameters
LOOP over number of lasers
initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
Receive mirror positions for this time ir.terval
if defenses are on then
LOOP over number of lasers
Call RRPVIS
end loop

Send laser-mirror ranges to node 7 (3 messages)

D-9

Send laser-mirror angles to node 5 (3 messages)
end if
Receive updated mirror utilization times from node 0

Increment simulation time

END SIMULATION LOOP

D.1.9 Node 7~ MIRVIS

Declare local variables and message types
Open communication channels
Receive number of mirrors per orbit, and number of mirror orbits
Receive number of lasers
LOOP over number of lasers
initialize laser utilization times
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
Receive mirror positions for this time interval
Receive laser-mirror range messages from node 6 (3 messages)
if END OF TIME INTERVAL message has not been sent
Update laser utilization times if update message received from node 0
Receive booster mirror ranges, beam incident angle, and
mirror slew angle from node 3
LOOP over number cf lasers
if laser is available in this time interval
Call MIRVIS
Send laser number and mirror data to node 5

end loop

Send total number of lasers available to node 5

Send message to node 3 to let it know ready for next cluster
end if
Receive END OF TIME INTERVAL message from node 3
Receive updated laser utilization times from node 0
Increment simulation time

END SIMULATION LOOP

D.2 1PSC/1 Implementation #2

D.2.1 Host Program

Declare local variables and message types
Load node 0 program (assignment node - LNKORD and ASSIGN)
Load node 1 program {link calculation node - RRBVIS, RRPVIS,
MIRVIS, and LNKCAL)
Load rode 2 program (booster position node - BOSTIT and TRAJ)
Load node 3 program (mirror position node - SBMIT and SBMPOS)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to nodes 0, 1, and 2
Loop over number of clusters
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target positions, and reentry angle

to node 2

D-11

Send average separation and number of boosters per cluster to
node 1
Send time before launch and number of boosters per cluster to node 0
Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information to nodes 1 and 3
Send number of orbits and mirrors per orbit to node 0
Read number of lasers
Swap byte order if Sun workstation host
Send number of lasers to nodes 0 and 3
Loop over number of lasers
Read laser latitude and longitude
end loop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to node 1
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag to all nodes
START SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun
LENGMSGI - received number of boosters remaining in each
cluster at end of simulation .ncrement, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.2.2 Node 0 - LNKORD and ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and time before launch
Receive number of mirrors per orbit, and numher of mirror orbits
loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop
end loop
Receive number of lasers
loop over number of lasers

initial laser utilization array
end loop
Receive simulation time information
Receive time of cluster burnout
START SIMULATION LOOP

Receive booster position for this time iuterval

If not END OF TIME INTERVAL then

Receive unsorted link calculations from node 1 (3 messages)

D-13

Call LNKORD

Call ASSIGN

if weapon assignment made then
update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

else

Receive message for end of simulation interval

Send updated utilization information and number of remaining boosters
per cluster to node 1 and the host (2 messages each)

Increment simulation time

end if
END SIMULATION LOOP

D.2.3 Node | - RRBVIS, RRPVIS, MIRVIS, & LNKCAL

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors ner orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays
end loop

end loop

D-14

Receive number of lasers
Receive laser parameters
LOOP over number of lasers
initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
Receive time of burnout from node 2
START SIMULATION LOOP
Receive mirror positions for this time interval
Receive cluster position vector for this time interval
Receive cluster velocity vector for this time interval
If defenses on then
LOOP over number of lasers
Call RRPVIS
end loop
LOOP over booster clusters
if boosters remain in cluster, before burn out, and
above minimum altitude then
Call RRBVIS
LOOP over number of lasers
if laser is available in this time interval
Call MIRVIS
Call LNKCAL
end loop
Send unsorted link data to node 0 (3 messages)
end loop
end if
Send END OF TIME INTERVAL message to nodes 0, 2, and 3

D-15

Receive updated utilization information and number of remaining boosters
per cluster from node 0 (2 messages)

Increment simulation time

END SIMULATION LOOP

D.2.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
LOOP over number of clusters
Determine cluster position and velocity vectors for this time interval
end ldémot first time interval then wait for END OF TIME INTERVAL message
Send cluster position and velocity vectors to nodes 0, 1, and the host

Increment simulation time

END SIMULATION LOOP

D.2.5 Node 8 - SBMIT and SBMPOS

Declare local variables and message types

Open communication channels

D-16

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP
Call SBMPOS
If not first time interval then wait for END OF TIME INTERVAL message
Send mirror positions to node 1 and HOST

Increment simulation time

END SIMULATION LOOP

D.3 iPSC/! Implementation #3

D.3.1 Host Program

Declare local variables and message types
Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)
Kill processes in nodes 0, 1, 2, 3, and 4
Load node 0 program (assignment node - ASSIGN)
Load node 1 program (mirror position node - SBMIT and SBMPOS)
Load node 2 program (laser-mirror node - RRPVIS)
Load node 3 program (cluster position node - BOSTIT and TRAJ)
Load node 4 program (cluster-mirror node - RRBVIS)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to nodes 0, 3, 4, and

5 through last node in current cube

D-17

Loop over number of clusters
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target positions, and reentry angle
to node 3
Send average separation and number of boosters per cluster to
node 4 and nodes 5 through last node in current cube
Send time before launch and number of boosters per cluster to node 0
Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information to nodes 1 and 5 through last node in current cube
Send number of orbits and mirrors per orbit to node 0, 2, and 4
Read number of lasers
Swap byte order if Sun workstation host
Send number of lasers to nodes 0, 2, and 5 through last node in current cube
Loop over number of lasers
Read laser latitude and longitude
end loop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 2 and 5 through last node in current cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plot if on Sun
LENGMSGI - received number of boosters remaining in each
cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.3.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster
Receive number of mirrors per orbit, and number of mirror orbits
loop over number of mirror orbits
loop over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
loop over number of lasers
initial laser utilization array

end loop

D-19

Receive simulation time information
Receive time of cluster burnout
START SIMULATION LOOP
Receive booster position for this time interval
If END OF TIME INTERVAL message not received then
Receive potential assignment information array
from nodes 5 through last node in current cube
LOOP over number of assignments in received array
Call ASSIGN
if weapon assignment made then
update laser and mirror utilization arrays and number of boosters
remaining in cluster
Send assignment to HOST
end if
end loop
else
Receive message for end of simulation interval
Send updated utilization information and number of remaining boosters
per cluster to nodes 2, 4, and 5 through last node in current cube
Send END OF TIME INTERVAL message to nodes 1 and 3
Send updated utilization information and number of remaining boosters
per cluster to the host
Increment simulation time
end if
END SIMULATION LOOP

D.83.8 Node 1 - SBMIT and SBMPOS

D-20

Declare local variables and message types
Open communication channels
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror altitude, true anomaly, and orbit inclination
Call SBMIT to initialize mirror orbits
Receive simulation time information
START SIMULATION LOOP
Call SBMPOS
If not first time interval then wait for END OF TIME INTERVAL message

Send mirror positions to nodes 2, 4, nodes 5 through the last node
in the current cube, and the HOST

Increment simulation time

END SIMULATION LOOP

D.3.4 Node 2 - RRPVIS

Declare local variables and message types
Open communication channels
Receive number of mirrors per orbit, and number of mirror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
Receive laser parameters
LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

D-21

end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
Receive mirror positions for this time interval
if defenses are on then
LOOP over number of lasers
Call RRPVIS
end loop
Send laser-mirror ranges and angles to ncdes 5 throngh
the maximum node id (6 messages)
end if
Receive updated mirror utilization times from node 0

Increment simulation time

END SIMULATION LOOP

D.3.5 Node 3 - BOSTIT and TRAJ

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP

LOOP over number of clusters

D-22

Determine cluster position and velocity vectors for this time interval
end lddmot first time interval then wait for END OF TIME INTERVAI message
Send cluster position and velocity vectors to nodes 0, 4, nodes 5 through
the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D.3.6 Node 4 - RRBVIS

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orhit) and number of mirror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive simulation time information and defenses flag
Receive time of cluster burnout from node 3
START SIMULATION LOOP
Receive mirror positions for this time interval
Receive cluster positions for this time interval
If defenses on then
LOOP over booster clusters
if boosters remain in cluster, before burn out, and

above minimum altitude then

D-23

Call RRBVIS
Save RRBM, RIANG, and SLANG in vector for next node in loop from
node 5 to last node in current cube
if information for 4 clusters has been saved in the vector
Send RRBM, RIANG, and SLANG to that node
if next node is node 5 wait to receive message that
node 5 is ready for next cluster
end if
end loop
end if
Send any saved but not sent cluster vectors to the appropriate nodes
Send END OF TIME INTERVAL message to node 5
Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.3.7 Node 5+ - MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
Receive number of lasers

Receive laser parameters

LOOP over number of lasers

D-24

initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
STAKT SIMULATION LOOP
Receive mirror positions for this time interval
Receive cluster position and velocity vectors for this time interval
Receive laser-mirror ranges and angles from node 2 (6 messages)
If END OF TIME INTERVAL message not yet received then
Receive cluster vector from node 4
LOOP over number of clusters in received vector
LOOP over number of lasers
if laser iz available in this time interval
Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
Save “NMLIK” potential assignments in array for node 0
if array for node 0 is full then
Send array of potential assignments to node 0
end if
end loop
end if
Send any non-empty arrays of potential assignments to node 0
Receive END OF TIME INTERVAL message
if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 5 to last node

else

D-25

Send END OF TIME INTERVAL message to node 0
end if

Receive updatcd utilization information waa numoer of remaining boosters

per cluster from node 0 (2 inessages)

Increment simulation time

END SIMULATION LOOP

D.4 1PSC/1 Implementation #4§

D.4.1 Host rrogram

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)

Kill processes in nodes 0, 1, 2, and 3
Load node 0 program {assignment node - ASSIGN)
Load node 1 program (mirror position node - SBMIT and SBMPOS)
Load node 2 program (cluster position node - BOSTIT and TRAJ)
Load node 3 program (cluster-mirror node - RRBVIS)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to nodes 0, 2, 3, and
4 through last node in current cube
Loop over number of clusters
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

D-26

to node 2
Send average separation and number of boosters per cluster to
node 3 and nodes 4 through last node in current cube
Send time before launch and number of boosters per cluster to node 0
Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information te nodes 1 and 4 through last node in current cube
Send number of orbits and mirrors per orbit to node 0 and 3
Read number of lasers
Swap byte order if Sun workstation host
Send number of lasers to nodes 0 and 4 through last node in current cube
Loop over number of lasers
Read laser latitude and longitude
end lcop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 4 through last node in cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag t¢ all nodes
START SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, ased in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

D-27

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSGI1 - received number of boosters remaining in each
cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.4.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster
Receive number of mirrors per orbit, and number of mirror orbits
loop over nuriber of mirror orbits
loop over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
loop over number of lasers
initial laser utilization array
end loop
Receive simulation time information
Receive time of cluster burnout
START SIMULATION LOOP
Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

D-28

Receive potential assignment information array
from nodes 5 through last node in current cube
LOOP over number of assignments in received array
Call ASSIGN
if weapon assignment made then
update laser and mirror utilization arrays and number of boosters
remaining in cluster
Send assignment to HOST
end if
end loop
else
Receive END OF TIME INTERVAL message
Send updated utilization information and number of remaining boosters
per cluster to nodes 2, 4, and 5 through last node in current cube
Send END OF TIME INTERVAL message to nodes 1 and 2
Send updated utilization information and number of remaining boosters
per cluster to the host
Increment simulation time
end if
END SIMULATION LOOP

D.4.3 Node 1 - SBMIT and SBMPOS

Declare local variables and message types

Oven communication charaels

Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

D-29

Receive simulation tirie information
START SIMULATION LOOP
Call SBMPOS
If not first time interval then wait for END OF TIME INTERVAL message
Send mirror positions to nodes 3 through the last node in the
current cube, and the HOST
Increment simulation time

END SIMULATION LOOP

D.4.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
LOOP over number of clusters
Determine cluster position and velocity vectors for this time interval
end ldémot first time interval then wait for END OF TIME INTERVAL message
Send cluster position and velocity vectors to nodes 0, 3, nodes 4 through
the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D-30

D.4.5 Node 3 - RRBVIS

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive simulation time information and defenses flag
Receive time of cluster burnout from node 2
START SIMULATION LOOP
Receive mirror positions for this time interval
Receive cluster positions for this time interval
If defenses on then
LOOP over booster clusters
.f boosters remain in cluster, before burn out, and
above minimum altitude then
Call RRBVIS
Save RRBM, RIANG, and SLANG in vector for next node in loop from
node 4 to last node in current cube
if information for 4 clusters has been saved in the vector
Send RRBM, RIANG, and SLANG to that node

if next node is node 4 wait to receive message that

D-31

node 4 is ready for next cluster
end if

end loop
end if
Send any saved but not sent cluster vectors to the appropriate nodes
Send END OF TIME INTERVAL message to node 4
Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.{.6 Node 4+ - RRPVIS, MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
Receive number of lasers
Receive laser parameters
LOOP over number of lasers

initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster position and velocity vectors for this time interval

D-32

LOOP over number of lasers

if laser is available this time interval Call RRPVIS
end loop
If END OF TIME INTERVAL message not yet received then
Receive cluster vector from node 4
LOOP over number of clusters in received vector
LOOP over number of lasers

if laser is available in this time interval
Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
Save “NMLIK” potential assignments in array for node 0
if array for node 0 is full then
Send array of potential assignments to node 0
end if
end loop
end if
Send any non-empty arrays of potential assignments to node 0
Receive END OF TIME INTERVAL message
if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 4 to last node
else
Send END OF TIME INTERVAL message to node 0
end if

Receive updated utilization information and number of remaining boosters

per cluster from node 0 (2 messages)

Increment simulation time

END SIMULATION LOOP

D.5 iPSC/1 Implementation #5

D.5.1 Host Program

Declare local variables and message types
Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)
Kill processes in nodes 0, 1, 2, and 3
Load node 0 program (assignment node - ASSIGN)
Load node 1 program (mirror position node - SBMIT and SBMPOS)
Load node 2 program (cluster positior. node - BOSTIT and TRAJ)
Load node 3 program (Supervisor node)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to nodes 0, 2, 3, and
4 through last node in current cube
Loop over number of clusters
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target positions, and reentry angle
to node 2
Send average separation and number of boosters per cluster to
node 3 and nodes 4 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

D-34

Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information to nodes 1 and 4 through last node in current cube
Send number of orbits and mirrors per orbit to node 0 and 3
Read number of lasers
Swap byte order if Sun workstation host
Send number of lasers to nodes 0 and 4 through last node in current cube
Loop over number of lasers
Read laser latitude and longitude
end loop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 4 through last node in cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag to all nodes
START SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plot if on Sun
LENGMSGI - received number of boosters remaining in each

cluster at end of simulation increment, increment time

D-35

END SIMULATION TIME LOOP

Output end of simulation information

D.5.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters por cluster
Receive number of mirrors per orbit, and number of mirror orbits
loop over number of mirror orbits
loop over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end lcop
Receive number of lasers
loop over number of lasers
initial laser utilization array
end loop
Receive simulation time information
Receive time of cluster burnout
START SIMULATION LOOP
Receive booster position for this time interval
If END OF TIME INTERVAL message not received then
Receive potential assignment information array
from nodes 5 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

D-36

if weapon assignment made then
update laser and mirror utilization arrays and number of boosters
remaining in cluster
Send assignment to HOST
end if
end loop
else
Receive END OF TIME INTERVAL message
Send updated utilization information and number of remaining boosters
per cluster to nodes 2, 4, and 5 through last node in current cube
Send END OF TIME INTERVAL message to nodes 1 and 2
Send updated utilization information and number of remaining boosters
per cluster to the host

Increment simulation time
end if
END SIMULATION LOOP

D.5.8 Node 1 - SBMIT and SBMPOS

Declare local variables and message types
Open communication channels
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror altitude, true anomaly, and orbit inclination
Call SBMIT to initialize mirror orbits
Receive simulation time information
START SIMULATION LOOP
Call SBMPOS
If not first time interval then wait for END OF TIME INTERVAL message

D-37

Send mirror positions to nodes 4 through the last node in the
current cube, and the HOST
Increment simulation time

END SIMULATION LOOP

D.5.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Cail BOSTIT
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
LOOP over number of clusters
Determine cluster position and velocity vectors for this time interval
end ldémot first time interval then wait for END OF TIME INTERVAL message
Send cluster position and velocity vectors to nodes 0, 3, nodes 4 through
the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D.5.5 Node 3 - Supervisor node

Declare local variables and message types

D-38

Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive simulation time information and defenses flag
Receive time of cluster burnout from node 2
START SIMULATION LOOP
Receive cluster positions for this time interval
If defenses on then
LOOP over booster clusters
if boosters remain in cluster, before burn out, and
above minimum altitude then
Save cluster index in vector for next node in the range
node 4 to last node in current cube
if information for 4 clusters has been saved in the vector
Send the vector to that node
end if
end loop
end if
Send any saved but not sent cluster vectors to the appropriate nodes
Send END OF TIME INTERVAL message to node 4
Receive updated utilization information and number of remaining boosters

per cluster from node 0

D-39

Increment simulation time

END SIMULATION LOOP

D.5.6 Node §+ - RRPVIS, RRBVIS, MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
Receive number of lasers
Receive laser parameters
LOOP over number of lasers
initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
START SIMULATION LOOP
Receive mirror positions for this time interval
Receive cluster position and velocity vectors for this time interval
LOOP over number of lasers
if laser is available this time interval Call RRPVIS
end loop
If END OF TIME INTERVAL message not yet received then
Receive cluster vector from node 4
LOOP over number of clusters in received vector
Call RRBVIS

LOOP over number of lasers

D-40

if laser 1s available in this time inter.al
Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
Save “NMLIK” potential assignments in array for node 0
if array for node 0 is full then
Send array of potential assignments to node 0
end if
end loop
end if
Send any non-empty arrays of potential assignments to node 0
Receive END OF TIME INTERVAL message
if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 4 to last node
else
Send END OF TIME INTERVAL message to node 0
end if
Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.6 iPSC/1 Implementation #6

D.6.1 Host Program

Declare local variables and message types

D-41

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)
Kill processes in nodes 0 and 1
Load node 0 program (assignment node - ASSIGN)
Load node 1 program (Supervisor node)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Read number of clusters
Swap byte order if Sun workstation host
Send number of clusters to all nodes
Loop over number of clusters
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target pesitions, and reentry angle
to nodes 2 through the last node in the current cube
Send average separation and number of boosters per cluster to

nodes 2 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 2 through last node in current cube

Send number of orbits and mirrors per orbit to node 0
Rez « number of lasers

Swap b;te order if Sun workstation host

Send number of lasers to nodes 0 and 2 through last node in current cube
Loop cver number of lasers

Read laser latitude and longitude

end loop

D-42

Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 2 through last node in cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag to all nodes
START SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plot if on Sun
LENGMSGT! - received number of boosters remaining in each
cluster at end of simulation increment, increment time
END SIMULATION TIME LOOP

Output end of sitaulation information

D.6.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive number of mirrors per orbit, and number of mirror orbits

D-43

loop over number of mirror orbits
loop over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
loop over number of lasers
initial laser utilization array
end loop
Receive simulation time information
Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 2 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if
end loop

else

Receive END OF TIME INTERVAL message

Send updated utilization information and number of remaining boosters

per cluster to nodes 1 through last node in current cube and the host

D-44

Increment simulation time
end if
END SIMULATION LOOP

D.6.3 Node I - Supervisor node

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of miiror orbits
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Receive simulation time information and defenses flag
Receive time of cluster burnout from node 2
START SIMULATION LOOP
Receive cluster positions for this time interval
If defenses on then
LOOP over booster clusters
if boosters remain in cluster, before burn out, and
above minimum altitude then
Save cluster index in vector for next node in the range
node 2 to last node in current cube
if information for 4 clusters has been saved in the vector

Send the vector to that node

D-45

end if
end loop
end if
Send any saved but not sent cluster vectors to the appropriate nodes
Send END OF TIME INTERVAL message to node 2
Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.6.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ, RRPVIS, RRBVIS,
MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive initialization data
Call SBMIT
Receive number of lasers
Receive laser parameters

LOOP over number of lasers

D-46

initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
Send cluster impact times to host
Send time to cluster burnout to nodes 0 and 1
START SIMULATION LOOP
Call SBMPOS
if I am node 2 Send mirror positions to the host
LOOP over number of clusters
Call TRAJ
end labg am node 2 Send booster position and velocity vectors
to nodes 0 and 1, and the host
LOOP over number of lasers
if laser is available this time interval Call RRPVIS
end loop
If END OF TIME INTERVAL message not yet received then
Receive cluster vector from node 1
LOOP over number of clusters in received vector
Call RRBVIS
LOOP over number of lasers
if laser is available in this time interval
Call MIRVIS
Call LNKCAL
end loop
Call I NKORD
Save “NMLIK” potential assignments in array for node 0
if array for node 0 is full then

Send array of potential assignments to node 0

D-47

end if
end loop
end if
Send any non-empty arrays of potential assignments to node 0
Receive END OF TIME INTERVAL message
if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 2 to last node
else
Send END OF TIME INTERVAL message to node 0
end if
Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.7 iPSC/1 Implementation #7

D.7.1 Host Prosram

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, & LNKORD)
Kill processes in nodes 0 and 1

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (Supervisor node)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

€y bote order if Sun workstation host

D-48

Send number of clusters to all nodes
Loop over number of cluste-s
Read cluster information (see implementation #1)
end loop
Swap byte order if Sun workstation host
Send cluster type, launch and target positions, and reentry angle
to all nodes
Send average separation and number of boosters per cluster to
nodes 2 through last node in current cube
Send time before launch and number of boosters per cluster to node 0
Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information to nodes 0 and 2 through last node in current cube
Read number of lasers
Swap byte order if Sun workstation host
Send number of lasers to nodes 0 and 2 through last node in current cube
Loop over number of lasers
Read laser latitude and longitude
end loop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 2 through last node in cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation host
Send increment, max time and flag to all nodes
START SIMULATION TIME LOOP

Receive pending message

D-49

Swap byte order if Sun workstation host
Case message type
MIMPACT - then received impact time and launch position
vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plot if on Sun
LENGMSGI - received number of boosters remaining in each
cluster at end of simulation increment, increment time
END SIMULATION TIME LOOP

Output end of simulation information

D.7.2 Node 0 - SBMIT, SBMPOS, BOSTIT, TRAJ, & ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror initialization data
Call SBMIT
LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

D-50

initialize mirror utilization arrays
end loop
end loop
Receive number of lasers
LOOP over number of lasers
initial laser utilization array
end loop
Receive simulation time information
Send impact times to host
START SIMULATION LOOP
Call SBMPOS
Send mirror positions to host
LOOP over number of clusters
Call "ERA Dbop
Send cluster positions to host
If END OF TIME INTERVAL message not received then
Receive potential assignment information array
from nodes 2 through last node in current cube
LOOP over number of assignments in received array
Call ASSIGN
if weapon assignment made then
update laser and mirror utilization arrays and number of boosters
remaining in cluster
Send assignment to HOST
end if
end loop
else

Receive END OF TIME INTERVAL message

D-51

Send updated utilization information and number of remaining boosters

per cluster to all nodes and the host
Increment simulation time
end if
END SIMULATION LOOP

D.7.3 Node 1 - BOSTIT, TRAJ, Supervisor node

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters
Call BOSTIT
end loop
Receive number of boosters per cluster and average separation
Receive simulation time information and defenses flag
START SIMULATION LOOP
if first time through simulation loop then
LOOP over number of clusters
Call TRAJ
end loop
end if
If defenses on then
LOOP over booster clusters
if boosters remain in cluster, before burn out, and

above minimum altitude then

D-52

Save cluster index in vector for next node in the range
node 2 to last node in current cube
end if
end loop
end if
LOOP over range 2 to last node in current cube
Send cluster vector to the appropriate node
end loop
Send END OF TIME INTERVALI message to node 2
Increment simulation time
if not last time through loop then
LOOP over number of clusters
Cail TRAJ with new time
end loop
end if
Receive updated utilization information and number of remaining boosters

per cluster from node 0

END SIMULATION LOOP

D.7.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ, RRPVIS, RRBVIS,
MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

Receive number of lasers
Receive laser parameters
LOOP over number of lasers
initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
Call SBMPOS
START SIMULATION LOOP
LOOP over number of lasers
if laser is available this time interval Call RRPVIS
end loop
If END OF TIME INTERVAL message not yet received then
Receive cluster vector from node 1
LOOP over number of clusters in received vector
Call TRAJ
Call RRBVIS
LOOP over number of lasers
if laser is available 1n this time interval
Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
Save “NMLIK" potential assignments in array for node 0
if array for node 0 is full then
Serd array of potential assignments to node 0
end if
end loop

end if

D-54

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 4 to last node

else
Send END OF TIME INTERVAL message to node 0

end if

Call SBMPOS for next time

Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.5 1PSC/1 Implementation #7

D &1 Host Program

Declare local variables and message types
Load ALL nodes with link calculatict. nc'e (MIRVIS, LNKCAL, and LNKORD)
Kill processes in node 0
Load node 0 program (assignment node - ASSIGN)
Open communication channel to nodes
Initialize graphics if Sun workstation host
Kead number of clusters
Swap byte order of Sun workstation host
Send number of clusters to all nodes
Loop over number of clusters

Read cluster information (see implementation #1)

[).55

end loop
Swap byte order if Sun workstation host
Send cluster type, launch and targe . positions, and reentry angle
to all nodes
Send average separation and nuimber of boosters per cluster to
nodes 1 through last node in current cube
Send time before launch and number of boosters per cluster to node 0
Read mirror information (see implementation #1)
Swap byte order if Sun workstation host
Send all mirror information to all nodes
Read number of lasers
Swap byte order if Sua workstation host
Send number of lasers to all nodes
Loop over number of lasers
Read laser latitude and longitude
end loop
Read laser parameters (see implementation #1)
Swap byte order if Sun workstation host
Send laser parameters to nodes 1 through last nade in cube
Read Simulation increment, maximum simulation time, and flag
to turn on defenses
Swap byte order if Sun workstation hoct
Send increment, max time and flag to all nodes
STARY SIMULATION TIME LOOP
Receive pending message
Swap byte order if Sun workstation host
Case message type

MIMPACT - then received impact time and launch position

D-56

vector for clusters, used in graphics routines.
MRPOSMSG - received mirror positions, plot if on Sun
MBUFMSG - received cluster positions, plot if on Sun
MSGZAP - received weapon assignment, plet if =2 Sun
LENGMSG] - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.8.2 Node 0 - ASSIGN

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boost _rs per cluster
Receive cluster types
Receive cluster launch and target positions, re-entry angle, and launch time
LOOP over number of clusters

Call BOSTIT
end loop
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror initialization data
Call SBMIT
LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

iitialize mirror utilization arrays
end loop

end loop

D-57

Receive number of lasers
LOOP over number of lasers
initial laser utilization array
end loop
Receive simulation time information
Send impact times to host
START SIMULATION LOOP
Call SBMPOS
Send mirror positions to host
LOOP over number of clusters
Call ERA bop
Send cluster positions to host
If END OF TIME INTERVAL message not received then
Receive potential assignment information array
from nodes 2 through last node in current cube
LOOP over number of assignments in received array
Call ASSIGN
if weapon assignment made then
update laser and mirror utilization arrays and number of boosters
remaining in cluster
Send assignment to HOST
end if
end loop
else
Receive END OF TIME INTERvAL message
Send updated utilization information and number of remaining boosters
per cluster to all nodes and the host

Increment simulation time

D-5%

end if
END SIMULATION LOOP

D.8.3 Node 1+ - RRPVIS, RRBVIS, MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types
Open communication channels
Receive number of clusters
Receive number of boosters per cluster and average separation
Receive number of mirrors per orbit, and number of mirror orbits
Receive mirror angular slew acceleration and time to stablize
Receive number of lasers
Receive laser parameters
LOOP over number of lasers
initialize laser utilization arrays and laser position vectors
end loop
Receive simulation time information and defenses flag
Call SBMPOS
START SIMULATION LOOP
LOOP over number of lasers
if laser i1s available this time interval Call RRPVIS
end loop
If END OF TIME INTERVAL message not yet received then
LOOP over number of clusters modulo my node number
Call TRAJ
Call RRBVIS
LOOP over number of lasc.s

if laser is available in this time interval

D-59

Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
Save “NMLIK” potential assignments in array for node 0
if array for node 0 is full then

Send array of potential assignments to node 0
end if
end loop
end if
Send any non-empty arrays of potential assignments to node 0
if node 1 then
Send END OF TIME INTERVAL message to node 2
else
Receive END OF TIME INTERVAL message
if not last node in current cube then
Send END OF TIME INTERVAL message to next node in
range 3 to last node
else
Send END OF TIME INTERVAL message to node 0
ena it
end if
Call SBMPOS to determine mirror positions for next time interval
Receive updated utilization information and number of remaining boosters
per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D-60

D.9 FEncore Implementation

Declare all global data structures
Read in booster initialization information
BEGIN PARALLEL
LOOP over number of clusters
Call BOSTIT
end loop
END PARALLEL
Read in mirror initialization information
Call SBMIT
LOOP over number of mirror orbits
LOOP over number of mirrors per orbit
initialize mirror utilization arrays
end loop
end loop
Read in laser initialization information
LOOP over number of lasers
Determine laser position and initialize utilization times
end loop
Read in simulation times and defense flag
BEGIN SIMULATION LOOP
Cail SBMPOS
BEGIN PARALLEL
LLOOP over number of clusters
Call TRAJ
end loop
END PARALLEL

if defenses are on then

D-61

BEGIN PARALLEL
LOOP over the number of lasers
Call RRPVIS if laser is available in this time interval
end loop
END PARALLEL
BEGIN PARALLEL
Declare local data structures required
LOOP over booster clusters
if cluster is above minimum altitude and before burnout then
LOOP over available lasers
Call MIRVIS
Call LNKCAL
end loop
Call LNKORD
BEGIN CRITICAL SECTION
Call ASSIGN
Display assignment
END CRITICAL SECTION
end if
end loop
END PARALLEL
end if
Increment Simulation time
END SIMULATION LOOP

Display simulation results

10.

11.

12.

Bibliography

. Banks, Jerry and John S. Carson. Discrete Event Simulation. Englewood Cliffs,

NJ: Prentice-Hall, 1984.

Baum, Alan M. and Donald J. McMillan. “Automated Parallelization of Serial
Simulations for Hypercube Parallel Processors.” In Distributed Simulation 1989,
La Jolla CA: SCS, 1989.

Beckman, Brian, et al. “Instantaneous Speedup.” To be published in summmer
simulation conference 1989, April 1989.

Beckman, Brian and P. Hontalas and J. Ruffles and F. Wieland and D. Jsefferson.
“Distributed Simulation and Time Warp, Partl: Desiy of Colliding Pucks.” In
Unger, B. and D. Jefferson, editors, Distributed Simulation 1988, Volume 19,
pages 56-60, La Jolla CA: SCS, February 1988.

Biles, William E. “Introduction to Simulation.” In Proceedings of the 1987
Winter Simulation Conference, pages 7-15, Decemnber 1987.

. Bryant, Randal E. “Simulation on a Distributed System.” In Proceedings of the

Ist Int’l Conference on Distributed Computing Systems, pages 544-552, October
1979.

. Chandy, K. Mani and Jayadev Misra. “Distributed Simulation: A Case Study

in Design and Verification of Distributed Programs,” IEEE Transactions on
Software Engineering, 5(5):440-452 (September 1979).

. Chandy, K. Mani and Rivi Sherman. “The Conditional Event Approach to

Distributed Simulation.” In Distributed Simulation 1989, La Jolla CA: SCS,
1989.

Thandy, K.M. and J. Misra. “Asynchronous Distributed Simulation via a Se-
quence of Parallel Computations,” Communications of the ACM, 24(11):19°-
206 (April 1981).

Cho, C. K., E. K. Lin and C. L. Jen. “On Performance Evaluations of Multi-
processor Systems for Real-time Simulation.” In Proceedings of the 17th Annual
Stmulation Symposium, pages 209-225, March 1984.

Comfort, John Craig. “The Design of a Multiprocessor Based Simulation Com-
puter - I1.” In Proceedings of the Sizteenth Annual Simulation Symposium, pages
197-209, 1983.

DESE Research and Development, Inc., Huntsville, Alabama. A Method for Im-
proving Technology Research and Development Decisions Regarding BMD and
ASAT, 1985. Volume II - Simulation System Design Guide.

BIB-1

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Encore. Multimaz Technical Summary. Encore Computer Corporation, Marl-

boro, MA, March 1987.

Fujimoto, Richard M. “Performance Measurements of Distributed Simulation
Strategies.” In Distributed Stinulation 1988, La Jolla CA: SCS, 1983.

Gilmer Jr., John B. and Jung Pyo Hong. “Replicated State Space Approach
for Parallel Simulation.” In Wilson, J., et al., editors, Proceedings of the 1986
Winter Simulation Conference, pages 430-434, IEEE, December 1986.

Glover, Charles. “Techniques for Converting Sequential Programs Into Concur-
rent Programs for a Hypercube Computer.” draft copy, 1988.

Hartrum, Thomas C. and Brian J. Donlan. “Distributed battle-management
simulation on a Hypercube.” In Unger, B. and D. Jefferson, editors, Distributed
Simulation 1988, pages 3-7, La Jolla CA: SCS, February 1988.

Heidelberger, Philip. “Statistical Analysis of Parallel Simulation.” In Proceed-
ings of the 1986 Winter Simulation Conference, pages 290-295, 1986.

Hoare, C.A.R. “Communicating Sequential Processes,” Communications of the
ACM, 21(8):666-677 (August 1978).

Hwang, Kai and Faye A. Briggs. Computer Architecture and Parallel Processing.
New York NY: McGraw-Hill, 1984.

Intel. {PSC System Overview Manual. Intel Scientific Computers, Beaverton,
Oregon, November 1986. Order Number 310610-001.

Intel. tPSC/2 User’s Guide (Preliminary). Intel Scientific Computers, Beaver-
ton, Oregon, March 1988. Order Number 311532-002.

Jefferson, David. “Virtual Time,” ACM Transactions on Programming Lan-
guages and Systems, 7(3):404-425 (July 1985).

Jefferson, David and Henry Sowizral. “Fast Concurrent Simulation using the
Time Warp Mechanism.” In Distributed Simulation 1985, La Jolla CA: SCS,
1985.

Jefferson, David, et al. ““The Status of the Time Warp Operating System™.”
Iu Symposium on Operating Systems Principles, pages 738-744, ACM, 1938,

Jones, Douglas W. “Concurrent Simulation: An Alternative to Distributed
Simulation.” In Proceedings of the 1986 Winter Simulation Conference, pages
417-423, 1986.

Kaudel, Fred J. “A Literature Survey on Distributed Discrete Event Simula-
tion,” Simuletter, 18(2):11-21 (June 1987).

Lin, Eric K. and Chian-Li Jen. “Contention Problem of a Multiprocessor Simu-
lator.” In Proceedings of the 16th Annual Simulation Symposium, pages 229-238,
March 1983.

BIB-2

29

30.

31.

33.

34.

35.

36.

38.

39.

40.

41.

42.

Misra, Jayadev. “Distributed Discrete-Event Simulation,” ACAM Computing
Surveys, 18(1):39-65 (March 1986).

Nicol, David M. “Mapping a battlefield simulation onto message-passing paral-
lel architectures.” In Distributed Sirnulation 1988, La Jolla CA: SCS, 1938.

Nicol, David M. “Dynamic Remapping of Parallel Time-stepped Simulations.”
In Distributed Stmulation 1982, La Jolla CA: SCS, 1989.

. Nicol, David M. and Paul I. Reynolds, Jr. “Problem Oriented Protocol De-

sign.” In Proceedings of the 1984 Winter Simulation Conference, pages 471-474,
November 1984.

Peterson, James L. and Abraham Silberschatz. Operating System Concepts
(Second Edition). Reading, MA: Addison-Wesley, 1985.

Pritsker, A. Alan B. Introduction to Simulation and SLAM I]. West Lafayvette
IN: Systems Publishing Corp., 1986.

Quinn, Michael 5. Designing Efficient Algorithms for Parallel Computers. New
‘ork NY: McGraw-Hill, 1987.

Reed, Daniel A. “Parallel Discrete Event Simulation: A Case Studyv.” In Pro-
ceedings of the Eighteenth Annual Stmulation Symposium, pages 95107, 1985,

. Reed, Daniel A. and Allen D. Malony. “Parallel Discrete Event Simulation: The

Chandy-Misra Approach.” In Distrmibuted Simulation 1988, La Jolla CA: SCS,
1988.

Reynolds, Paul F., Jr. “A Shared Resource Algorithm for Distril ited Simula-
tion.” In Proceedings of the Ninth Annual Int'l Computer Architc lurc Confer-
ence, pages 259-266, April 1982.

Reynolds, Paui F.; Jr. “A spectrum of options for parallel simulation.”™ In Pro-
ceedings of the 1988 Winter Simulation Conference, pages 325-332, December
1988.

Shannon, Robert E. Systems Simulation: The Art and Science. Englewood
Cliffs NJ: Prentice-Hall, 1975.

Wieland, Fredrick and others. “Distributed combat simulation and time warp:
The model and its performance.” In Distributed Simulation 1989, La Jolla CA:
SCS, 1989.

Zhang, Guoqing and Bernard P. Zeigler. “DEVS-Scheme Supported Mapping
of Hierarchical Models onto Multiple Processor Systems.” In Distributed Simu-
lation 1989, La Jolla CA: SCS, 1989.

BIB-3

Vita

Mark Leslie Huson R, /A (tcr srad-
uating from Springfield High School in 1977, he attended the University of Tulsa (no
degree), before enlisting in the Air Force in 1982. He served as an Electronic War-
fare Technician at Eglin AFB, Florida, prior to completing his B.S. in Computer
Science from the University of Tulsa in 1985 via the Air Force’s Bootstrap program.
After receiving his commission through OTS in September, 1985, he was stationed
at Peterson AFB, Colorado, as a Missile Warning/Space Defense Communications
Analyst for HQ AFSPACECOM. In December 1986 he became a Command, Con-
trol, Communications Programmer for the Mobile Command and Control System
(MCCS), an Ada development project for US Space Command. He completed an
M.S. in Systems Management from the University of Southern California in April of
1988, prior to reporting to the Air Force Institute of Technology.

e

VITA

UNCLASSIFIED

URI LASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public relezse;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89C-10

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(if applicable)

AFIT/CNG

6a. NAME OF PERFORMING ORGANIZATION

School of Engineering

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION SDIO (If applicable)
Phase I Program Office sLI10/S/r1I
8¢ ADDK:ZS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 1F143, The Pentagon PROGRAM PROJECT TASK WORK UNIT
Washington, T.C. 20201-7100 ELEMENT NO. | NO. NO ACCESSION NO
11. TITLE [Include Security Classification)
AN EMPIPICAL DEVELCFMENT OF PAPLLILTT.L7ATION CUILEFLINMES FCP

TIMI-DRIVEN SIMULATICN

12. PERSONAL AUTHOR(S)

Marx I.. Huson, Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
ME Thesis FROM TO 1989 December 1a¢

1€. SJUPFLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP
12 05

Computerized Simulation,

1. SUBJECT TERMS (Continue on reverse if necessary and identiz; by block number)

Parallel processing

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Dr. Tromas C.

Hartrum

Associate Frofessor
Department of Tlectrical and Computer Engineering

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

O uncLASSIFIEDUNLIMITED £ sanie AS RPT {3 oTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL
Dr. Thomas C. Hartrum

22b TELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL
(513)255-3576 AFIT/ENG

DD Form 1473, JUN 86 SECURITY CLASSIFICATION OF THIS PAGE

Previous editions arc obsolete.

UMCLASSIFIED

UNCLASSIFIED

Block 19.

Distributed simnulation is an arca of research which offers great promise for speeding up
simulations. Program parallelizationis usually an iterative process requiring several atternpts
to produce an efficient parallel implementation of a sequential program. This is due to the
lack of any standards or guidelines for program parallelization.

In this research effort a Ballistic Missile Defense (BMD) time-driven simmi=tion progran:,
developed by DESE Research and Engineering. was used as a test vehicle for investigating
parallelization options for distributed and shared memory architectures. Implementations
were developed to address issues of functional versus data program decomposition, computi-
tion versus communications overhcad, and shared versus distributed memory architectures

Performance data collected from each implementation was used to develop guidelines for
implementing parallel versions of sequentiil time-driven simulations. These guidelines were
based on the relative performance of the various implementations and on general ohservations
made during the course of the research.

UNCLASSIFIED

